Skip to main content
Log in

Electric Properties of Semiconductor Nanopillars

Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We studied the electrical transport through epitaxial, 8 nm long and about 100 nm diameter, GaAs pillars. They are fabricated with molecular beam epitaxy using a self-assembling method called local droplet etching. The nanopillars are embedded in an AlGaAs tunneling barrier between two epitaxial GaAs layers. Because of the epitaxial growth, the pillars are connected to these GaAs layers without additional interfaces. They thus can be considered as electronic point contacts between three-dimensional electron reservoirs. Voltage-current characteristics of the structures feature a characteristic asymmetry that is not observed in reference samples. Furthermore, the behavior of the resistance in magnetic fields applied parallel and perpendicular to the current direction is compared for samples with and without pillars. Clear differences are found that are associated with current-carrying states in the pillars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M.S. Dresselhaus and I.L. Thomas, Nature 414, 332 (2001).

    Article  Google Scholar 

  2. C.J. Vineis, A. Shakouri, A. Majumdar, and M.G. Kanatzidis, Adv. Mater. 22, 3970 (2010).

    Article  Google Scholar 

  3. K. Nielsch, J. Bachmann, J. Kimling, and H. Böttner, Adv. Energy Mater. 1, 713 (2011).

    Article  Google Scholar 

  4. A. Majumdar, Sience 303, 777 (2004).

    Article  Google Scholar 

  5. T.C. Harman, P.J. Taylor, M.P. Walsh, and B.E. LaForge, Science 297, 2229 (2002).

    Article  Google Scholar 

  6. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. Dresselhaus, G.␣Chen, and Z. Ren, Science 320, 634 (2008).

    Article  Google Scholar 

  7. A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nat. Lett. 451, 163 (2007).

    Article  Google Scholar 

  8. L.D. Hicks and M.S. Dresselhaus, Phys. Rev. B 47, 12727 (1993).

    Article  Google Scholar 

  9. T.E. Humphrey and H. Linke, Phys. Rev. Lett. 94, 096601 (2005).

    Article  Google Scholar 

  10. M.F. O’Dwyer, T.E. Humphrey, and H. Linke, Nanotechnology 17, 338 (2006).

    Article  Google Scholar 

  11. Ch. Heyn, M. Schmidt, S. Schwaiger, A. Stemmann, S.␣Mendach, and W. Hansen, Appl. Phys. Lett. 98, 033105 (2011).

    Article  Google Scholar 

  12. Th. Bartsch, M. Schmidt, Ch. Heyn, and W. Hansen, Phys. Rev. Lett. 108, 075901 (2012).

    Article  Google Scholar 

  13. Th. Bartsch, A. Wetzel, D. Sonnenberg, M. Schmidt, Ch. Heyn, and W. Hansen, Phys. Status Solidi A 210, 161 (2013).

    Article  Google Scholar 

  14. C. Jeong and M. Lundstrom, Appl. Phys. Lett. 100, 233109 (2012).

    Article  Google Scholar 

  15. B.J. van Wees, H. Houten, C.W.J. Beenakker, J.G. Williamson, L.P. Kouwenhoven, D. Marel, and C.T. Foxon, Phys. Rev. Lett. 60, 848 (1988).

    Article  Google Scholar 

  16. Ch. Heyn, A. Stemmann, and W. Hansen, Appl. Phys. Lett. 95, 173110 (2009).

    Article  Google Scholar 

  17. D. Sonnenberg, A. Graf, V. Paulava, W. Hansen, and Ch. Heyn, Appl. Phys. Lett. 101, 143106 (2012).

    Article  Google Scholar 

  18. A. Nemcsics, Ch. Heyn, L. Toth, L. Dobos, A. Stemmann, and W. Hansen, J. Cryst. Growth 58, 335 (2011).

    Google Scholar 

  19. A. Stemmann, T. Köppen, M. Grave, S. Wildfang, S. Mendach, W. Hansen, and Ch. Heyn, J. Appl. Phys. 106, 064315 (2009).

    Article  Google Scholar 

  20. J.G. Simmons, J. Appl. Phys. 34, 1793 (1963).

    Article  Google Scholar 

  21. Q.S. Zhu, S.M. Mou, X.C. Zhou, and Z.T. Zhong, Appl. Phys. Lett. 62, 2813 (1993).

    Article  Google Scholar 

  22. L.P. Kouwenhoven, B.J. van Wees, C.J.P.M. Harmans, J.G. Williamson, H. van Houten, C.W.J. Beenakker, C.T. Foxon, and J.J. Harris, Phys. Rev. B 39, 8040 (1989).

    Article  Google Scholar 

  23. D. Vashaee and A. Shakouri, J. Appl. Phys. 95, 1233 (2004).

    Article  Google Scholar 

  24. E. Böckenhoff, K.V. Klitzing, and K. Plog, Phys. Rev. B 38, 120 (1988).

    Article  Google Scholar 

  25. E.E. Vdovin, A. Levin, A. Patane, L. Eaves, P.C. Main, Y.N. Khanin, Y.V. Dubrovskii, M. Henini, and G. Hill, Science 290, 122 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Th. Bartsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartsch, T., Sonnenberg, D., Strelow, C. et al. Electric Properties of Semiconductor Nanopillars. J. Electron. Mater. 43, 1972–1975 (2014). https://doi.org/10.1007/s11664-013-2929-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2929-9

Keywords

Navigation