, Volume 39, Issue 7, pp 1036-1042
Date: 23 Mar 2010

Feasibility of Localized Substrate Thinning for Reduced Dislocation Density in CdTe/Si Heterostructures

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

HgCdTe heteroepitaxy on low-cost, large-lattice-mismatched substrates such as Si continue to be plagued by large threading dislocation densities that ultimately reduce the operability of the thermal imaging detector array. Molecular-beam epitaxy (MBE) of 10 μm- to 15 μm-thick CdTe buffer layers has played a crucial role in reducing dislocation densities to current state-of-the-art levels. Herein, we examine the possibility that growth on locally back-thinned substrates could prove advantageous in further reducing dislocation densities in the CdTe/Si heteroepitaxial system. Using defect decoration techniques, a decrease in dislocation (etch-pit) density of up to ~42% has been measured in CdTe regions where the underlying Si substrate was chemically back-thinned to ~20 μm. A theoretical understanding is proposed, where a substrate-thickness-dependent dislocation image force is a likely cause for the experimentally observed reduction in threading dislocation density. These observations raise the prospect of combining localized substrate thinning with other techniques to further reduce dislocation densities to levels sought for HgCdTe/CdTe/Si and other large-lattice-mismatched systems.