Skip to main content
Log in

In Situ Observation of Small-Scale Deformation in a Lead-Free Solder Alloy

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In situ observation of the local, small-scale deformation behavior of a Sn-Ag-Cu (SAC387) alloy under extremely small strain rates was realized using a custom-designed mechanical testing stage integrated with atomic force microscopy (AFM) and optical microscopy. Grain boundary sliding (GBS) hand in hand with grain boundary decohesion (GBD) is the dominant mechanism in the early stage of deformation (<8.0% local strain) while intragranular slip bands are observed in the large-strain regime for the dendritic microstructure at room temperature. The deformation mechanisms of SAC387 are discussed in detail with reference to its microstructural constituents and mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R.A. Goyer. (1993) Environ. Health Perspect. 100, 177. doi:10.2307/3431524

    Article  PubMed  CAS  Google Scholar 

  2. M. Abtew, G. Selvaduray (2000) Mater. Sci. Eng. R Rep. 27, 95

    Article  Google Scholar 

  3. I.E. Anderson. (2007) J. Mater. Sci. Mater. Electron. 18, 55. doi:10.1007/s10854-006-9011-9

    Article  CAS  Google Scholar 

  4. K.N. Tu, A.M. Gusak, M. Li. (2003) J. Appl. Phys. doi:10.1063/1.1517165 93, 1335

    Article  ADS  CAS  Google Scholar 

  5. M. Kerr, N. Chawla (2004) Acta Mater. 52, 4527 doi:10.1016/j.actamat.2004.06.010

    Article  CAS  Google Scholar 

  6. A.U. Telang, T.R. Bieler, J.P. Lucas, K·N. Subramanian, L.P. Lehman, Y. Xing, E.J. Cotts. (2004) J. Electron. Mater. 33, 1412. doi:10.1007/s11664-004-0081-2

    Article  ADS  CAS  Google Scholar 

  7. K·N. Subramanian, J.G. Lee (2004) J. Mater. Sci. Mater. Electron. 15, 235 doi:10.1023/B:JMSE.0000012461.69417.75

    Article  CAS  Google Scholar 

  8. 8. Y. Ding, C.Q. Wang, Y.H. Tian, M.Y. Li (2007) J. Alloy. Comp. 428, 274 doi:10.1016/j.jallcom.2006.02.069

    Article  CAS  Google Scholar 

  9. 9. Y. Ding, C.Q. Wang, M.Y. Li. (2005) J. Electron. Mater. 34, 1324 doi:10.1007/s11664-005-0258-3

    Article  ADS  CAS  Google Scholar 

  10. 10. Y. Ding, C.Q. Wang, M.Y. Li, H·S. Bang (2005) J. Mater. Sci. 40, 1993. doi:10.1007/s10853-005-1222-6

    Article  Google Scholar 

  11. 11. M.A. Matin, W·P. Vellinga, M.G.D. Geers (2006) Mater. Sci. Eng. A 431, 166 doi:10.1016/j.msea.2006.05.144

    Article  Google Scholar 

  12. 12. A.U. Telang, T.R. Bieler, M.A. Crimp. (2006) Mater. Sci. Eng. A 421, 22. doi:10.1016/j.msea.2005.10.009

    Article  Google Scholar 

  13. 13. H. Ni, X.D. Li. (2006) Nanotechnology 17, 3597

    ADS  Google Scholar 

  14. 14. H. Ni, X.D. Li, H. Gao, T.P. Nguyen. (2005) Nanotechnology 16, 1746 doi:10.1088/0957-4484/16/9/056

    Article  ADS  CAS  Google Scholar 

  15. 15. D. Chandrasekaran, M. Nygards (2003) Acta Mater. 51, 5375 doi:10.1016/S1359-6454(03)00394-X

    Article  CAS  Google Scholar 

  16. 16. S.E. Harvey, P.G. Marsh, W·W. Gerberich (1994) Acta Mater. 42, 3493 doi:10.1016/0956-7151(94)90481-2

    Article  CAS  Google Scholar 

  17. 18. J.-P. Poirier. 1985, Creep of Crystals, London: Cambridge University Press.

    Google Scholar 

  18. 17. K·P. Wu, N. Wade, J. Cui, K. Miyahara. (2003) J. Electron. Mater. 32, 5. doi:10.1007/s11664-003-0245-5

    Article  ADS  CAS  Google Scholar 

  19. 19. R. Raj, M.F. Ashby. (1971) Metall. Trans. 2, 1113. doi:10.1007/BF02664244

    Article  ADS  Google Scholar 

  20. 20. I.M. Lefshitz. (1963) Sov. Phys. JETP 17, 909

    Google Scholar 

  21. 21. T.G. Langdon (2006). J. Mater. Sci. 41, 597 doi:10.1007/s10853-006-6476-0

    Article  CAS  Google Scholar 

  22. 22. W·F. Hosford. 2005, Mechanical Behavior of Materials. New York: Cambridge University Press.

    MATH  Google Scholar 

  23. 23. E. Rabkin, L. Klinger, T. Izyumova, A. Berner, V. Semenov (2001) Acta Mater. 49, 1429. doi:10.1016/S1359-6454(01)00040-4

    Article  CAS  Google Scholar 

  24. 24. F. Weinberg (1958) Trans. Metall. Soc. AIME 212, 808

    CAS  Google Scholar 

  25. 25. D. Hull, D.J. Bacon, 2001. Introduction to dislocations, 4th ed. Boston: Butterworth-Heinemann

    Google Scholar 

Download references

Acknowledgements

Financial support for this study was provided by the National Science Foundation (Grant No. EPS-0296165) and the University of South Carolina Nano Center. The content of this information does not necessarily reflect the position or policy of the government and no official endorsement should be inferred.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Y., Liang, J., Xu, ZH. et al. In Situ Observation of Small-Scale Deformation in a Lead-Free Solder Alloy. J. Electron. Mater. 38, 400–409 (2009). https://doi.org/10.1007/s11664-008-0600-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-008-0600-7

Keywords

Navigation