Journal of Electronic Materials

, Volume 37, Issue 4, pp 515–522

Effect of Carbon Nanotubes on the Shear Strength and Electrical Resistivity of a Lead-Free Solder


DOI: 10.1007/s11664-008-0379-6

Cite this article as:
Nai, S., Wei, J. & Gupta, M. Journal of Elec Materi (2008) 37: 515. doi:10.1007/s11664-008-0379-6


In this study, the influence of carbon nanotubes (CNTs) on the shear strength and electrical resistivity of 95.8Sn-3.5Ag-0.7Cu lead-free solder was investigated. Composite solders containing various weight percentages of CNTs were synthesized, and electrical resistivity results of the bulk composite solders revealed that the presence of CNTs did not degrade the electrical performance of such solders. Tests conducted on lap-shear solder joint samples showed an improvement in the shear strength of the composite solders. However, at higher amounts of CNT additions (0.04 wt.% and 0.07 wt.%), the strength improvement was only marginal compared to that of the monolithic solder joint. A comparison of yield stress and ultimate stress test results between the solder joint and bulk solder also showed good agreement. Furthermore, the presence of CNTs in the solder matrix had a minimal influence on the thickness of the interfacial intermetallic compound layer formed during soldering.


Shear strength electrical resistivity carbon nanotubes lead-free solder composites 

Copyright information

© TMS 2008

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringNational University of SingaporeSingaporeSingapore
  2. 2.Singapore Institute of Manufacturing TechnologySingaporeSingapore