, Volume 31, Issue 10, pp 1022-1031

Pad effects on material-removal rate in chemical-mechanical planarization

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The role of a porous pad in controlling material-removal rate (MRR) during the chemical-mechanical planarization (CMP) process has been studied numerically. The numerical results are used to develop a phenomenological model that correlates the forces on each individual abrasive particle to the applied nominal pressure. The model provides a physical explanation for the experimentally observed domains of pressure-dependent MRR, where the pad deformation controls the load sharing between active-abrasive particles and direct pad-wafer contact. The predicted correlations between MRR and slurry characteristics, i.e., particle size and concentration, are in agreement with experimentally measured trends reported by Ouma1 and Izumitani.2