, Volume 44, Issue 1, pp 115-122
Date: 21 Nov 2012

Novel Process for Solid State Reduction of Metal Oxides and Hydroxides

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Recently the reductive expansion synthesis (RES) method was introduced as a means to create nano- and sub-micron metal particles and alloys by rapid heating of physical mixtures of urea with a metal nitrate. In the present work the generality of the RES method was demonstrated by creating metal micron and sub-micron particles from oxide and hydroxide precursors, and outlining the impact of temperature, precursor ratio, and gas flow rate on the product. For example, precursor selection impacted the temperature required for complete reduction, the amount of carbon present, and the size of the metal particles. For complete NiO reduction to micron scale particles, high urea content and a high temperature [ca. 1073 K (800 °C)] were required. In contrast, Ni(OH)2 was reduced to metal at far lower temperatures. Moreover, the Ni particles formed from NiOH were sub-micron (ca. 200 nm) in size and carbon encapsulated. Other parameter variations had a similarly significant impact. Indeed, the reciprocal relationship between inert gas flow rate and the extent of reduction supports the supposition that the primary mechanism of reduced metal particle formation is the reduction of metal oxide particles by gases produced by urea decomposition. Collectively these and other findings indicate the RES method can be manipulated to create a range of micron and sub-micron reduced metal particle architectures appropriate for different applications.

Manuscript submitted April 12, 2012.