Skip to main content
Log in

Computational and experimental study of turbulent flow in a 0.4-scale water model of a continuous steel caster

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Single-phase turbulent flow in a 0.4-scale water model of a continuous steel caster is investigated using large eddy simulations (LES) and particle image velocimetry (PIV). The computational domain includes the entire submerged entry nozzle (SEN) starting from the tundish exit and the complete mold region. The results show a large, elongated recirculation zone in the SEN below the slide gate. The simulation also shows that the flow exiting the nozzle ports has a complex time-evolving pattern with strong cross-stream velocities, which is also seen in the experiments. With a few exceptions, which are probably due to uncertainties in the measurements, the computed flow field agrees with the measurements. The instantaneous jet is seen to have two typical patterns: a wobbling “stair-step” downward jet and a jet that bends upward midway between the SEN and the narrow face. A 51-second time average suppressed the asymmetries between the two halves of the upper mold region. However, the instantaneous velocity fields can be very different in the two halves. Long-term flow asymmetry is observed in the lower region. Interactions between the two halves cause large velocity fluctuations near the top surface. The effects of simplifying the computational domain and approximating the inlet conditions are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

D/Dt :

total derivative (=∂/∂t+ν j ∂/∂x j )

x i :

coordinate direction (x, y, or z)

v i :

velocity component

v 0 :

kinematic viscosity of fluid

v t :

turbulent kinematic viscosity

v eff :

effective viscosity of turbulent fluid

ρ :

density

p :

static pressure

t :

time

k sgs :

sub-grid scale turbulent kinetic energy

Δ i :

grid size (in x, y and z directions)

i, j :

direction (x, y, z)

References

  1. L. Zhang and B.G. Thomas: Iron Steel Inst. Jpn. Int., 2003, vol. 43 (3), pp. 271–91.

    CAS  Google Scholar 

  2. W.H. Emling, T.A. Waugaman, S.L. Feldbauer, and A.W. Cramb: Steelmaking Conf. Proc., Chicago, IL, Apr. 13–16, 1997, ISS, Warrendale, PA, 1994, vol. 77, pp. 371–79.

    Google Scholar 

  3. B.G. Thomas: in The Making, Shaping and Treating of Steel, 11th ed., Casting Volume, A.W. Cramb, ed., The AISE Steel Foundation, Warrendale, PA, 2003, p. 24.

    Google Scholar 

  4. J. Herbertson, Q.L. He, P.J. Flint, and R.B. Mahapatra: Steelmaking Conf. Proc., ISS, Warrendale, PA, 1991, vol. 74, pp. 171–85.

    Google Scholar 

  5. B.G. Thomas, Q. Yuan, S. Sivaramakrishnan, T. Shi, S.P. Vanka, and M.B. Assar: Iron Steel Inst. Jpn. Int., 2001, vol. 41 (10), pp. 1262–71.

    CAS  Google Scholar 

  6. R. Sobolewski and D.J. Hurtuk: 2nd Process Technology Conf. Proc., ISS, Warrendale, PA, 1982, vol. 2, pp. 160–65.

    Google Scholar 

  7. D. Gupta and A.K. Lahiri: Steel Res., 1992, vol. 63 (5), pp. 201–04.

    Google Scholar 

  8. D. Gupta and A.K. Lahiri: Metall. Mater. Trans. B, 1996, vol. 27B, pp. 757–64.

    Article  CAS  Google Scholar 

  9. M.B. Assar, P.H. Dauby, and G.D. Lawson: Steelmaking Conf. Proc., ISS, Warrendale, PA, 2000, vol. 83, pp. 397–411.

    Google Scholar 

  10. B.G. Thomas, X. Huang, and R.C. Sussman: Metall. Mater. Trans. B, 1994, vol. 25B, pp. 527–47.

    CAS  Google Scholar 

  11. B.G. Thomas and L. Zhang: Iron Steel Inst. Jpn. Int., 2001, vol. 41 (10), pp. 1181–93.

    CAS  Google Scholar 

  12. F.M. White: Viscous Fluid Flow, 2nd ed., McGraw-Hill Series in Mechanical Engineering, McGraw-Hill, Boston, MA, 1991, p. 614.

    Google Scholar 

  13. S. Sivaramakrishnan: Master’s Thesis, University of Illinois at Urbana-Champaign, Urbana, 2000.

    Google Scholar 

  14. Q. Yuan, B.G. Thomas, and S.P. Vanka: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 685–702.

    Article  CAS  Google Scholar 

  15. E.R.G. Eckert: in Fluid Mechanics Measurements, R.J. Goldstein, ed., Taylor & Francis, Washington, D.C., 1996, pp. 65–114.

    Google Scholar 

  16. R.J. Adrian: in Fluid Mechanics Measurements, R.J. Goldstein, ed., Taylor & Francis, Washington, D.C., 1996, pp. 175–299.

    Google Scholar 

  17. N.J. Lawson and M.R. Davidson: J. Fluids Eng., 2002, vol. 124 (6), pp. 535–43.

    Article  Google Scholar 

  18. R.J. Adrian: Annu. Rev. Fluid Mech., 1991, vol. 23, pp. 261–304.

    Article  ADS  Google Scholar 

  19. I.I. Lemanowicz, R. Gorissen, H.J. Odenthal, and H. Pfeifer: Stahl Eisen., 2000, vol. 120 (9), pp. 85–93.

    Google Scholar 

  20. S.B. Pope: Turbulent Flows, Cambridge University Press, Cambridge, United Kingdom, 2000, p. 771.

    MATH  Google Scholar 

  21. D.E. Hershey, B.G. Thomas, and F.M. Najjar: Int. J. Num. Meth. Fluids, 1993, vol. 17, pp. 23–47.

    Article  CAS  Google Scholar 

  22. F.M. Najjar, D.E. Hershey, and B.G. Thomas: 4th FIDAP Users Conf., Evanston, IL, 1991, Fluid Dynamics International, Inc., Evanston, IL, 1991, pp. 1–55.

    Google Scholar 

  23. H. Bai and B.G. Thomas: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 253–67.

    CAS  Google Scholar 

  24. H. Bai and B.G. Thomas: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 269–84.

    CAS  Google Scholar 

  25. B.G. Thomas, L.M. Mika, and F.M. Najjar: Metall. Trans. B, 1990, vol. 21B, pp. 387–400.

    CAS  Google Scholar 

  26. M.R. Aboutalebi, M. Hasan, and R.I.L. Guthrie: Metall. Mater. Trans. B, 1995, vol. 26B, pp. 731–44.

    CAS  Google Scholar 

  27. X.K. Lan, J.M. Khodadadi, and F. Shen: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 321–32.

    Article  CAS  Google Scholar 

  28. X. Huang and B.G. Thomas: Can. Metall. Q., 1998, vol. 37 (304), pp. 197–212.

    Article  CAS  Google Scholar 

  29. B.G. Thomas: Mathematical Models of Continuous Casting of Steel Slabs, Report, Continuous Casting Consortium, University of Illinois at Urbana-Champaign, Urbana, IL, 2000.

    Google Scholar 

  30. J. Knoepke, M. Hubbard, J. Kelly, R. Kittridge, and J. Lucas: Steelmaking Conf. Proc., Chicago, IL, Mar. 20–23, 1994, ISS, Warrendale, PA, 1994, pp. 381–88.

    Google Scholar 

  31. Q. Yuan, S.P. Vanka, and B.G. Thomas: 2nd Int. Symp. on Turbulent and Shear Flow Phenomena, Stockholm, Royal Institute of Technology (KTH), Stockholm, 2001, p. 6.

    Google Scholar 

  32. U. Schumann: J. Comput. Phys., 1975, vol. 8, pp. 376–404.

    Article  ADS  MathSciNet  Google Scholar 

  33. K. Horiuti: J. Phys. Soc. Jpn., 1985, vol. 54 (8), pp. 2855–65.

    Article  ADS  Google Scholar 

  34. H. Schmidt and U. Schumann: J. Fluid Mech., 1989, vol. 200, pp. 511–62.

    Article  MATH  ADS  Google Scholar 

  35. U. Schumann: Theor. Comput. Fluid Dyn., 1991, vol. 2, pp. 279–90.

    Article  Google Scholar 

  36. W.W. Kim and S. Menon: AIAA 97-0210, American Institute of Aeronautics and Astronautics (AIAA), New York, NY, 1997.

    Google Scholar 

  37. F.H. Harlow and J.E. Welch: Phys. Fluids, 1965, vol. 8 (112), pp. 2182–89.

    Article  Google Scholar 

  38. J. Crank and P. Nicolson: Proc. Cambridge Phil. Soc., 1947, vol. 43, pp. 50–67.

    Article  MathSciNet  Google Scholar 

  39. L.F. Sampine and M.K. Gordon: Computer Solution of Ordinary Differential Equations: the Initial Value Problem, W.H. Freeman & Co., San Francisco, CA, 1975.

    Google Scholar 

  40. Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA, [Report No. UCRL-MA-137155 DR], 2001.

  41. Q. Yuan, B. Zhao, S.P. Vanka, and B.G. Thomas: unpublished research, 2004.

  42. R. Madabushi and S.P. Vanka: Phys. Fluids, 1991, vol. 3 (11), pp. 2734–745.

    Article  ADS  Google Scholar 

  43. H. Tennekes and J.L. Lumley: A First Course in Turbulence, The MIT Press, Cambridge, MA, 1992, pp. 197–222.

    Google Scholar 

  44. H. Bai and B.G. Thomas: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 707–22.

    Article  CAS  Google Scholar 

  45. F.M. Najjar, B.G. Thomas, and D.E. Hershey: Metall. Mater. Trans. B, 1995, vol. 26B, pp. 749–65.

    CAS  Google Scholar 

  46. H. Bai: Ph.D. Thesis, University of Illinois at Urbana-Champaign, Urbana, IL, 2000.

    Google Scholar 

  47. A. Cramb, Y. Chung, J. Harman, A. Sharan, and I. Jimbo: Iron Steelmaker, 1997, vol. 24 (3), pp. 77–83.

    CAS  Google Scholar 

  48. Q. Yuan, B.G. Thomas, and S.P. Vanka: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 703–14.

    Article  CAS  Google Scholar 

  49. S. Sivaramakrishnan, H. Bai, B.G. Thomas, P. Vanka, P. Dauby, and M. Assar: Ironmaking Conf. Proc., ISS, Warrendale, PA, 2000, vol. 59, pp. 541–57.

    Google Scholar 

  50. D. Gupta and A.K. Lahiri: Metall. Mater. Trans. B, 1994, vol. 25B, pp. 227–33.

    CAS  Google Scholar 

  51. T. Honeyands and J. Herbertson: 127th ISIJ Meeting, ISIJ, Tokyo, 1994.

    Google Scholar 

  52. D. Gupta, S. Chakraborty, and A.K. Lahiri: Iron Steel Inst. Jpn. Int., 1997, vol. 37 (7), pp. 654–58.

    CAS  Google Scholar 

  53. R. Gass: Inland Steel, Inc., East Chicago, IN, private communication, 1992.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, Q., Vanka, S.P., Thomas, B.G. et al. Computational and experimental study of turbulent flow in a 0.4-scale water model of a continuous steel caster. Metall Mater Trans B 35, 967–982 (2004). https://doi.org/10.1007/s11663-004-0091-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-004-0091-8

Keywords

Navigation