Skip to main content
Log in

Microstructural Changes During Plastic Deformation and Corrosion Properties of Biomedical Co-20Cr-15W-10Ni Alloy Heat-Treated at 873 K

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Microstructural changes were observed during the plastic deformation of ASTM F90 Co-20Cr-15W-10Ni (mass pct) alloy heat-treated at 873 K (600 °C) for 14.4 ks, and analyzed by electron backscatter diffraction and in situ X-ray diffraction techniques. The obtained results revealed that the area fraction of the ε-phase (fε) in the as-received alloy was higher than that in the heat-treated alloy in the low-to-middle strain region (≤ 50 pct), whereas the fε of the heat-treated alloy was higher than that of the as-received alloy at the fracture point. During plastic deformation, the ε-phase was preferentially formed at the twin boundaries of the heat-treated alloy rather than at the grain boundaries. According to the transmission electron microscopy observations, the thin ε-phase layer formed due to the alloy heat treatment acted as the origin of deformation twinning, which decreased the stress concentration at the grain boundaries. The results of anodic polarization testing showed that neither the heat treatment at 873 K (600 °C) nor plastic deformation affected the alloy corrosion properties. To the best of our knowledge, this is the first study proving that the formation of a thin ε-phase layer during the low-temperature heat treatment of the studied alloy represents an effective method for the enhancement of the alloy ductility without sacrificing its strength and corrosion properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. J. Favre, Y. Koizumi, A. Chiba, D. Fabregue and E. Maire: Metall. Mater. Trans. A, 2013, vol. 44, pp. 2819–2830.

    Article  Google Scholar 

  2. P. Poncin and J. Proft: Med. Device Mater., Proc. Mater. Process. Med. Devices Conf., 2003, pp. 253–59.

  3. F.R. Morral: J. Mater., 1966, vol. 1, pp. 384–412.

    Google Scholar 

  4. R.V. Marrey, R. Butgermeister, R. B. Grishaber and R. O. Ritchie: Biomaterials, 2006, vol. 27, pp. 1988–2000.

    Article  CAS  Google Scholar 

  5. K. Ueki, K. Ueda and T. Narushima: Metall. Mater. Trans. A, 2016, vol. 47, pp. 2773–2782.

    Article  Google Scholar 

  6. T. Narushima, S. Mineta, Y. Kurihara and K. Ueda: JOM 2013 vol. 65, pp. 489–504.

    Article  CAS  Google Scholar 

  7. Y. Koizumi, S. Suzuki, K. Yamanaka, B-S. Lee, K. Sato, Y. Li, S. Kurosu, H. Matsumoto and A. Chiba: Acta Mater., 2013, vol. 61, pp. 1648–1661.

    Article  CAS  Google Scholar 

  8. K. Yamanaka, M. Mori, S. Kurosu, H. Matsumoto and A. Chiba: Metall. Mater. Trans. A, 2009, vol. 40, pp. 1980–1994.

    Article  CAS  Google Scholar 

  9. K. Yamanaka, M. Mori and A. Chiba: Metall. Mater. Trans. A, 2012, vol. 43, pp. 4875–4887.

    Article  Google Scholar 

  10. K Yamanaka, M. Mori and A. Chiba: Acta Biomater., 2013, vol. 9, pp. 6259–6267.

    Article  CAS  Google Scholar 

  11. S. Kurosu, H. Matsumoto, A. Chiba, C. Landron, D. Fabregue and E. Maire: Scr. Mater., 2011, Vol. 64, pp 367–370.

    Article  CAS  Google Scholar 

  12. K. Hagihara, T. Nakano and K. Sasaki: Scr. Mater. 2016. Vol. 123, pp 149–153.

    Article  CAS  Google Scholar 

  13. J. Teague, E. Cerreta and M. Stout: Metall. Mater. Trans. A, 2004, vol. 35, pp. 2767–2781.

    Article  CAS  Google Scholar 

  14. R. K. Gupta, M. K. Karthikeyan, D. N. Bhalia, B. R. Ghosh and P. P. Sinha: Met. Sci. Heat Treat., 2008, vol. 50, pp. 175–178.

    Article  CAS  Google Scholar 

  15. N. Yukawa and K. Sato: Mater. Trans. JIM, 1968, vol. 9, pp. 680–686.

    CAS  Google Scholar 

  16. M. Tanaka and H. Iizuka: Metall. Mater. Trans. A, 1992, vol. 23, pp. 609–616.

    Article  CAS  Google Scholar 

  17. P. Poncin, B. Gruez, P. Missillier, and P. Comte-Gaz: Med. Device Mater. III, Proc. Mater. Process. Med. Devices Conf., 2006, pp. 85–90.

  18. P. Poncin, C. Millet, and J. Chevy: Med. Device Mater. II, Proc. Mater. Process. Med. Devices Conf., 2nd, 2004, pp. 279–83.

  19. W. Walke, Z. Paszenda and J. Tyrlik-Held: Journal of Achievements in Materials and Manufacturing Engineering, 2006, vol. 16, pp.74–79.

    Google Scholar 

  20. S. Mineta, Alfirano, S. Namba, T. Yoneda, K. Ueda and T. Narushima: Metall. Mater. Trans. A, 2012, vol. 43, pp. 3351–3358.

    Article  Google Scholar 

  21. S. Mineta, S. Namba, T. Yoneda, T. Ueda and T. Narushima: Metall. Mater. Trans. A, 2010, vol. 41, pp. 2129–2138.

    Article  CAS  Google Scholar 

  22. D. T. Sawyer, A. J. Sobkowiak and J. L. Roberts, Jr.: Electrochemistry for Chemists, 2nd ed., John Wiley & Sons, New York, NY, 1995, pp 192.

    Google Scholar 

  23. S. Hiromoto, E.Onodera, A. Chiba, K. Asami and T. Hanawa: Biomaterials, 2005 vol. 26, pp. 4912–4923.

    Article  CAS  Google Scholar 

  24. H. M. Tawancy, V. R. Ishwar and B. E. Lewis: J. Mater. Sci. Lett., 1986, vol. 5, pp. 337–341.

    Article  CAS  Google Scholar 

  25. H. Fujita and T. Mori: Scr. Metall., 1975, Vol. 9, pp. 631–636.

    Article  CAS  Google Scholar 

  26. C. Montero-Ocampo, R. Juarez and A. Salinas Rodriguez: Metall. Mater. Trans. A, 2002, vol. 33, pp. 2229–2235.

    Article  CAS  Google Scholar 

  27. M. Michiuchi, H. Kokawa, Z.J. Wang, Y.S. Sato, K. Sakai: Acta Mater., 2006, vol. 54, pp. 5179–5184.

    Article  CAS  Google Scholar 

  28. A. Eghlimi, M. Shamanian, M. Eskandarian, A. Zabolian and J. A. Szpunar: Mater. Charact., 2015, vol. 106, pp. 27–35.

    Article  CAS  Google Scholar 

  29. A. Eghlimi, M. Shamanian, M. Eskandarian, A. Zabolian, M. Nezakat and J. A. Szpunar: Surf. Coat. Tech., 2015, vol. 264, pp. 150-162.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study was financially supported by the Japan Society for the Promotion of Science KAKENHI (Grant Number JP 16J04279).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kosuke Ueki.

Additional information

Manuscript submitted June 7, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ueki, K., Ueda, K., Nakai, M. et al. Microstructural Changes During Plastic Deformation and Corrosion Properties of Biomedical Co-20Cr-15W-10Ni Alloy Heat-Treated at 873 K. Metall Mater Trans A 49, 2393–2404 (2018). https://doi.org/10.1007/s11661-018-4597-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4597-0

Navigation