Skip to main content
Log in

Solidification Behavior in Newly Designed Ni-Rich Ni-Ti-Based Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The present investigation reports phase and microstructure evolution during solidification of novel Ni-rich Ni-Ti-based alloys, Ni60Ti40, Ni50Cu10Ti40, Ni48Cu10Co2Ti40, and Ni48Cu10Co2Ti38Ta2 during suction casting. The design philosophy of the multicomponent alloys involves judicious selection of alloying elements such as Cu, Co, and Ta in the near Ni60Ti40 eutectic alloy by replacing both Ni and Ti so that phase mixture in the microstructure remains the same from the binary to quinary alloy. The basic objective is to study the effect of addition of Cu, Co, and Ta on the phase evolution and transformation in the Ni-rich Ni-Ti-based alloys. The detailed electron microscopic studies on these suction cast alloys reveal the presence of ultrafine eutectic lamellae between NiTi and Ni3Ti phases along with dendritic NiTi and Ti2Ni phases. It has also been observed that in the binary (Ni60Ti40) alloy, the ordered NiTi (B2) phase transforms to trigonal (R) phase followed by NiTi martensitic phase (M-phase), i.e., B2 → R-phase → M-phase during solid-state cooling. However, the addition of alloying elements such as Cu, Co to the binary (Ni60Ti40) alloy suppresses the martensitic transformation of the ordered NiTi (B2) dendrite. Thus, in the ternary and quaternary alloys, the ordered NiTi (B2) phase is transformed to only trigonal (R) phase, i.e., B2 → R-phase. The secondary precipitate of Ti2Ni has been observed in all of the studied alloys. Interestingly, Ni48Cu10Co2Ti38Ta2 quinary alloy shows the disordered nature of NiTi dendrites. The experimentally observed solidification path is in good agreement with Gulliver–Scheil simulated path for binary alloy, whereas simulated solidification path deviates from the experimental results in case of ternary, quaternary, and quinary alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R. Lahoz and J.A. Puertolas: J. Alloys Compd., 2004, vol. 381, pp. 130–136.

    Article  Google Scholar 

  2. Y. Liu, Y. Liu and J.V. Humbeeck: Acta Mater., 1999, vol. 47, pp.199–209.

    Article  Google Scholar 

  3. H. Scherngell and A.C. Kneissl: Scripta Mater., 1998, vol. 39, pp. 205–212.

    Article  Google Scholar 

  4. S.A. Shabalovskaya: Biomedical Mater. Eng., 2002, vol. 12, pp. 69–109.

    Google Scholar 

  5. K. Otsuka and C.M. Wayman , eds., Shape Memory Materials, Cambridge University Press, Cambridge, 1998.

  6. G. He, J. Eckert, W. Löser and L. Schultz: Nat. Mater., 2003, vol. 2, pp. 33–37.

    Article  Google Scholar 

  7. J.M. Park, S.W. Sohn, T.E. Kim, K.B. Kim, W.T. Kim and D.H. Kim: Scripta Mater., 2007, vol. 57, pp. 1153-1156.

    Article  Google Scholar 

  8. D.V. Louzguine, H. Kato and A. Inoue: Philos. Mag. Lett., 2004,vol. 84, pp. 359–364.

    Article  Google Scholar 

  9. J. M. Park, N. Mattern, U. Kuhn, J. Eckert, K.B. Kim, W.T. Kim, K. Chattopadhyaya and D.H. Kim: J. Mater. Res., 2009, vol. 24, pp. 2605-2609.

    Article  Google Scholar 

  10. J. Das, K. B. Kim, F. Baier, W. Löser, A Gebert and J. Eckert: J. Alloys Compd., 2007, vol. 434–435, pp. 28-31.

    Article  Google Scholar 

  11. S. Samal, B. Mondal, K. Biswas and Govind: Metall. Mater.Trans. A, 2013, vol. 44A, pp. 427–439.

    Article  Google Scholar 

  12. B. Mondal, S. Samal, K. Biswas and Govind: IOP Conf. Ser.Mater. Sci. Eng., 2011, vol. 27, pp. 012025.

    Article  Google Scholar 

  13. S. Samal, P. Gautam, S. Agarwal and K. Biswas: Mater. Sci.Forum, 2014, vol. 790, pp. 497–502.

    Article  Google Scholar 

  14. S. Samal, S. Agarwal, P. Gautam and K. Biswas: Metall. Mater.Trans. A, 2015, vol. 46A, pp. 851-868.

    Article  Google Scholar 

  15. G. He, W. Löser and J. Eckert: Acta Mater., 2003, vol. 51, pp. 5223-5234.

    Article  Google Scholar 

  16. G. He, J. Eckert, W. Löser and M. Hagiwara: Acta Mater., 2004, vol. 52, pp. 3035-3046.

    Article  Google Scholar 

  17. H.C. Yim, D. Xu and W. L. Johnson: Appl. Phys. Lett., 2003, vol. 82, pp. 1030-1032.

    Article  Google Scholar 

  18. H.C. Yim, R. D. Conner and W. L. Johnson: Scripta Mater., 2005, vol. 53, pp. 1467-1470.

    Article  Google Scholar 

  19. D. Xu, G. Duan, W. L. Johnson and C. Garland: Acta Mater., 2004, vol. 52, pp. 3493-3497.

    Article  Google Scholar 

  20. S. Samal and K. Biswas: J. Nanopart. Res., 2013, vol. 15, pp. 1–11.

    Article  Google Scholar 

  21. R. Elliott: Eutectic Solidification Processing: Crystalline and Glassy Alloys, Butterworths, London, 1983.

    Google Scholar 

  22. L. C. Zhang: Adv. Mat. Res., 2012, vol. 1, pp. 13-29.

    Article  Google Scholar 

  23. K.A. Jackson and J.D. Hunt: Trans. Metall. Soc. AIME, 1966, vol. 236, pp. 1129-1142.

    Google Scholar 

  24. R. Trivedi, P. Magnin and W.Kurz: Acta Metall. Mater., 1987, vol. 35, pp. 971-980.

    Article  Google Scholar 

  25. Q.L. Dai, B.B. Sun, M.L Sui, G. He, Y. Li, J. Eckert, W.K. Luo and E. Ma:J. Mater. Res., 2004, vol. 19, pp. 2557-2566.

    Article  Google Scholar 

  26. O. Matsumoto, S. Miyazaki, K. Otsuka and H. Tamura: Acta Metall. Mater., 1987, vol. 35, pp. 2137–2144.

    Article  Google Scholar 

  27. K.F. Hane and T.W. Shield: Acta Mater., 1999, vol. 47, pp. 2603–2617.

    Article  Google Scholar 

  28. K.Otsuka and X. Ren: Progr. Mater. Sci., 2005, vol. 50, pp. 511–678.

    Article  Google Scholar 

  29. M.S. Choi, T. Fukuda, T. Kakeshita and H. Mori: Phil. Mag., 2006, vol. 86, pp. 67-78.

    Article  Google Scholar 

  30. M. C. Flemings: Solidification Processing, McGraw-Hill, New York, 1974.

    Google Scholar 

  31. X. Zhang and H. Sehitoglu: Mater. Sci. Eng. A, 2004, vol. 374, pp. 292–302.

    Article  Google Scholar 

  32. M.B. Salamon, M.E. Meichle and C.M. Wayman: Phys. Rev. B, 1985, vol. 31, pp. 7306-7315.

    Article  Google Scholar 

  33. S. Miyazaki and C.M. Wayman: Acta Metall., 1988, vol. 36, pp. 181– 192.

    Article  Google Scholar 

  34. C.M. Hwang, M.E. Meichle, M.B. Salamon and C.M. Wayman: Phil. Mag. A, 1983, vol. 47, pp. 31-62.

    Article  Google Scholar 

  35. P. J. S. Buenconsejo, R. Zarnetta and A. Ludwig: Scripta Mater., 2011, vol. 64, pp. 1047–1050.

    Article  Google Scholar 

  36. J. A.Dantzig and M. Rappaz: Solidification, EPFL Press, Lausanne, Switzerland, 2009, pp. 345–427.

    Book  Google Scholar 

  37. Q. Zuo, F. Liu, L. Wang and C. Chen: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 3014-3027.

    Article  Google Scholar 

  38. K. Biswas, G. Phanikumar, D.-H. Moritz, D.M. Herlach and K. Chattopadhyaya: Phil. Mag., 2007, vol. 87, pp. 3817-3837.

    Article  Google Scholar 

  39. K. Biswas, G. Phanikumar, K. Chattopadhyaya, T. Volkmann, O. Funke, D.-H. Moritz and D.M. Herlach: Mater. Sci. Eng. A, 2004, vols. 375-377, pp. 464-467.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishanu Biswas.

Additional information

Manuscript submitted April 20, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samal, S., Biswas, K. & Phanikumar, G. Solidification Behavior in Newly Designed Ni-Rich Ni-Ti-Based Alloys. Metall Mater Trans A 47, 6214–6223 (2016). https://doi.org/10.1007/s11661-016-3789-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3789-8

Keywords

Navigation