Skip to main content
Log in

R-Curve Approach to Describe the Fracture Resistance of Tool Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This work addresses the events involved in the fracture of tool steels, aiming to understand the effect of primary carbides, inclusions, and the metallic matrix on their effective fracture toughness and strength. Microstructurally different steels were investigated. It is found that cracks nucleate on carbides or inclusions at stress values lower than the fracture resistance. It is experimentally evidenced that such cracks exhibit an increasing growth resistance as they progressively extend, i.e., R-curve behavior. Ingot cast steels present a rising R-curve, which implies that the effective toughness developed by small cracks is lower than that determined with long artificial cracks. On the other hand, cracks grow steadily in the powder metallurgy tool steel, yielding as a result a flat R-curve. Accordingly, effective toughness for this material is mostly independent of the crack size. Thus, differences in fracture toughness values measured using short and long cracks must be considered when assessing fracture resistance of tool steels, especially when tool performance is controlled by short cracks. Hence, material selection for tools or development of new steel grades should take into consideration R-curve concepts, in order to avoid unexpected tool failures or to optimize microstructural design of tool steels, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S.A. Horton and H.C. Child: Met. Technol., 1983, vol. 10, pp. 245-56

    Article  Google Scholar 

  2. H. Berns and C. Broeckmann: Eng. Frac. Mec., 1997, vol. 58, pp. 311-25

    Article  Google Scholar 

  3. T. Antretter and F.D. Fischer: Mater. Sci. Eng. A, 1997, vol. 237A, pp. 6-11

    Article  Google Scholar 

  4. H. Berns, A. Melander, D. Weichert, N. Asnafi, C. Broeckmann and A. Groβ-Weege: Comput. Mater. Sci., 1998, vol. 11, pp. 166-80

    Article  Google Scholar 

  5. F.G. Rammerstorfer, A.F. Plankensteiner, A.D. Fischer and T. Antretter: Mater. Sci. Eng. A, 1999, vol. 259A, pp. 73-84

    Article  Google Scholar 

  6. J.D. Bolton and A.J. Gant: J. Mater. Sci., 1998, vol. 33, pp. 939-53

    Article  Google Scholar 

  7. M.A. Gomes, A.S. Wronski and C.S. Wrigth: Int. J. Fract., 1997, vol. 83, pp. 207-21

    Article  Google Scholar 

  8. S-H. Choo, C. Kyu, K. Euh, S. Lee, J.-Y- Jung and S. Ahn: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 3041-52

    Article  Google Scholar 

  9. F. Meurling, A. Melander, M. Tiedesten and L. Westin: Int. J. Fatigue, 2001, vol. 23, pp. 215-24

    Article  Google Scholar 

  10. K. Shiozawa, L. Lu and S. Ishihara: Fatigue Fract. Engng. Mater. Struct., 2002, vol. 24, pp. 781-90

    Article  Google Scholar 

  11. C.R. Sohar, A. Betzwar-Kotas, C. Gierl, B. Weiss and H. Danninger: Int J. Fatigue, 2008, vol. 30, pp. 1137-49

    Article  Google Scholar 

  12. D. Das, R. Sarkarb, A. K. Duttac and K. K. Rayd: Mat. Sci. Eng. A, 2010, vol. 528A, pp. 589-603

    Article  Google Scholar 

  13. I. Picas I, R. Hernández, D. Casellas, B. Casas, I. Valls, in Mechanical performance of cold forming tools, in Proc. 8th Int. Tooling Conf., P. Beiss, C. Broeckman, S. Francke and B. Keysselitz eds., Aachen, Germany; 2009, pp. 1037–48

  14. T. Fett and D.Munz: J. Mater. Sci., 1993, vol. 28, pp. 742–52

    Article  Google Scholar 

  15. D. Casellas, J, Alcalá, L. Llanes, and M. Anglada: J. Mat. Sci., 2001, vol. 36, pp. 3011–25

  16. D. Munz: J. Am. Ceram. Soc., 2007, vol. 90, pp. 1–15

    Article  Google Scholar 

  17. J. J. Kruzic, R. L. Satet, M. J. Hoffmann, R. M. Cannon and R. O. Ritchie: J. Am. Ceram. Soc., 2008, vol. 91, pp. 1986–94

    Article  Google Scholar 

  18. P.A. Mataga: Acta Mater., 1989, vol. 37, pp. 3349–59

    Article  Google Scholar 

  19. Y. Torres, R. Bermejo, L. Llanes and M. Anglada: Eng. Frac. Mech., 2008, vol. 75, pp. 4422-30

    Article  Google Scholar 

  20. O. Sbaizeroa, G. Pezzottia and T. Nishidaa: Acta Mater., 1998, vol. 46, pp. 681-7

    Article  Google Scholar 

  21. R.R. Adharapurapu, K.S. Vecchio, F. Jiang and S. Rohatgi: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 3217-36

    Article  Google Scholar 

  22. R.O. Ritchie, K.J. Koester, S. Ionova, W. Yao, N.E. Lane and J.W. Ager III: Bone, 2008, vol. 43, pp. 798-812

    Article  Google Scholar 

  23. ASTM E399-09: Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness K Ic of Metallic Materials. American Society for Testing and Materials, West Conshohocken, PA, 2009

  24. J.C. Newman and I.S. Raju: Eng. Mater. Struct., 1992, vol. 15, pp. 1141-53

    Article  Google Scholar 

  25. D. Casellas, J. Caro, S. Molas, J.M. Prado and I. Valls: Acta Mater., 2007, vol. 55, pp. 4277-86

    Article  Google Scholar 

  26. K. Fukaura, Y. Yokoyama, D. Yokoi, N. Tsuji, and K. Ono: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1289–1300

  27. A.G. Evans, in Advances in Ceramics: Science and Technology of Zirconia II, N. Claussen, M. Rühle and A.H. Heuer eds., Am. Ceram. Soc., Columbus OH, 1980, pp. 193–212.

  28. P. Muro, S. Gimenez and I. Iturriza: Scripta Mater., 2002, vol. 46, pp. 369-73

    Article  Google Scholar 

  29. M.R. Krishnadev and S.C. Jain: Eng. Fail. Anal., 2007, vol. 14, pp. 1053-64

    Article  Google Scholar 

  30. S.Y. Luo: J. Mater. Process. Technol., 1999, vol. 88, pp. 122-33

    Article  Google Scholar 

  31. I. Picas, R. Hernández, D. Casellas, B. Casas, and I. Valls, in Proc. 1st Hot Sheet Metal Forming of High-Performance Steel, K. Steinhoff, M. Oldenburg and B. Prakash eds., Kassel, Germany, 2008, pp. 179–189

  32. K. Nothhaft, J. Suh, M. Golle, I. Picas, D. Casellas and W. Volk: Prod. Eng. Res. Devel., 2012, vol. 6, pp. 413-20

    Article  Google Scholar 

Download references

Acknowledgments

This work has been partially funded by ACC1Ó (Grants TECRD12-1-0012 and TECCTA-13-1-0005) and the Spanish Ministerio de Economía y Competitividad (Grant MAT2012-34602). The authors would like to express their gratitude to Professor Jean Steinmetz, at Jean Lamour Institute (France), for the in-depth analysis of carbides in K360 tool steel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Casellas.

Additional information

Manuscript submitted September 9, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Picas, I., Casellas, D. & Llanes, L. R-Curve Approach to Describe the Fracture Resistance of Tool Steels. Metall Mater Trans A 47, 2739–2754 (2016). https://doi.org/10.1007/s11661-016-3455-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3455-1

Keywords

Navigation