Skip to main content
Log in

Effect of Multistage Heat Treatment on Microstructure and Mechanical Properties of High-Strength Low-Alloy Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The influence of Cu-rich precipitates (CRPs) and reverted austenite (RA) on the strength and impact toughness of a Cu-containing 3.5 wt pct Ni high-strength low-alloy (HSLA) steel after various heat treatments involving quenching (Q), lamellarization (L), and tempering (T) is studied using electron back-scatter diffraction, transmission electron microscopy, and atom probe tomography. The QT sample exhibits high strength but low impact toughness, whereas the QL samples mostly possess improved impact toughness but moderate strength, but the QLT samples again have degraded impact toughness due to additional tempering. The dispersion of nanoscale CRPs, which are formed during tempering, is responsible for the enhanced strength but simultaneously leads to the degraded impact toughness. The RA formed during lamellarization contributes to the improved impact toughness. Based on the present study, new heat treatment schedules are proposed to balance strength and impact toughness by optimizing the precipitation of CRPs and RA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. K. Nishioka, and K. Ichikawa: Sci. Technol. Adv. Mater., 2012, vol. 13, pp. 023001.

    Article  Google Scholar 

  2. M. Mujahid, A.K. Lis, C.I. Garcia, and A.J. DeArdo: J. Mater. Eng. Perform., 1998, vol. 7, pp. 247-257.

    Article  Google Scholar 

  3. Z.W. Zhang, C.T. Liu, Y.R. Wen, A. Hirata, S. Guo, G. Chen, M.W. Chen, and B.A. Chin: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 351-359.

    Article  Google Scholar 

  4. Y. Nagai, Z. Tang, M. Hassegawa, T. Kanai, and M. Saneyasu: Phy. Rev. B, 2001, vol. 63, p. 134110.

    Article  Google Scholar 

  5. J. Kang, C. Wang, and G.D. Wang: Mater. Sci. Eng. A., 2012, vol. 553, pp. 96-104.

    Article  Google Scholar 

  6. W.H. Zhou, X.L. Wang, P.K.C. Venkatsurya, H. Guo, C.J. Shang, and R.D.K. Misra: Mater. Sci. Eng. A, 2014, vol. 607, pp. 569-577.

    Article  Google Scholar 

  7. J.W. Morris, Z. Guo, C.R. Krenn, and Y.H. Kim: ISIJ Int., 2001, vol. 41, pp. 599-611.

    Article  Google Scholar 

  8. J.I. Kim, C.K. Syn, and J.W. Morris: Metall. Trans. A, 1983, vol. 14A, pp. 93-103.

    Article  Google Scholar 

  9. B. Fultz, J.I. Kim, Y.H. Kim, H.J. Kim, G.O. Fior, and JW Morris: Metall. Trans. A, 1985, vol. 16A, pp. 2237-49.

    Article  Google Scholar 

  10. A Saha, and GB Olson: J. Computer-Aided Mater. Des., 2007, vol. 14, pp. 177-200.

    Article  Google Scholar 

  11. S. Kang, E.D. Moor, and J.G. Speer: Metall. Mater. Trans. A, 2015, vol. 46, pp. 1005-1011.

    Article  Google Scholar 

  12. E.D. Moor, D.K. Matlock, J.G. Speer, and M.J. Merwin: Scripta Mater., 2011, vol. 64, pp. 185-188.

    Article  Google Scholar 

  13. Y.S. Ahn, H.D. Kim, T.S. Byun, Y.J. Oh, G.M. Kim, and J.H. Hong: Nucl. Eng. Des., 1999, vol. 194, pp. 161-177.

    Article  Google Scholar 

  14. Y.Y. Chen, B.G. Cheng, and D.S. Liu: Heat treatment of Metals, 2012, vol. 37, pp.77-82. (in Chinese).

    Google Scholar 

  15. D Isheim, AH Hunter, XJ Zhang, DN Seidman: Metall. Mater. Trans. A, 2013, vol. 44, pp. 3046-3059.

    Article  Google Scholar 

  16. N. Nakada, J. Syarif, T. Tsuchiyama, and S. Takaki: Mater. Sci. Eng. A, 2004, vol. 374, pp. 137-144.

    Article  Google Scholar 

  17. Thermo-Calc Software AB and Foundation of Computational Thermodynamics. ThermoCalc users’ guide, version S. Stockholm: Thermo-Calc Software AB, 2011.

  18. L. Zhao, N.H. van Dijk, E. Brück, J. Sietsma, and S van der Zwaag: Mater. Sci. Eng. A, 2001, vol. 313, pp. 145-152.

    Article  Google Scholar 

  19. M.K. Miller: Atom Probe Tomography: Analysis at the Atomic Level, First ed., Kluwer Academic/Plenum Publishers, New York, 1999.

    Google Scholar 

  20. H.M. Wen, T.D. Topping, D. Isheim, D.N. Seidman, and EJ Lavernia: Acta Mater., 2013, vol. 61, pp. 2769-2782.

    Article  Google Scholar 

  21. K.C. Russell, and L.M. Brown: Acta Metall., 1972, vol. 20, pp. 969-974.

    Article  Google Scholar 

  22. S.H. Hashemi: Int. J. Pres. Ves. Pip., 2009, vol. 86, pp. 533-540.

    Article  Google Scholar 

  23. S.H. Hashemi: Int. J. Pres. Ves. Pip., 2008, vol. 85, pp. 879-884.

    Article  Google Scholar 

  24. Q.D. Liu, and S.J. Zhao: MRS Communi., 2012, vol. 2, pp. 127-132.

    Article  Google Scholar 

  25. L.T. Stephenson, M.P. Moody, P.V. Liddicoat, and S.P. Ringer: Microsc. Microanal., 2007, vol. 13, pp. 448-463.

    Article  Google Scholar 

  26. P.J. Othen, M.L. Jenkins, and G.D.W. Smith: Philos. Mag., 1994, vol. 70A, pp. 1-24.

    Article  Google Scholar 

  27. P.J. Othen, M.L. Jenkins, G.D.W. Smith, and W.J. Phythian: Philos. Mag. Lett., 1991, vol. 64, pp. 383-391.

    Article  Google Scholar 

  28. Q.D. Liu, J.F. Gu, and C.W. Li: J. Mater. Res., 2014, vol. 29, pp. 950-958.

    Article  Google Scholar 

  29. H. Ivan, and K. Ernst: Mater. Sci. Eng. A, 2010, vol. 527, pp. 3546-3551.

    Article  Google Scholar 

  30. J. Takahashi, K. Kawakami, and Y. Kobayashi: Mater. Sci. Eng. A, 2012, vol. 535, pp. 144-152.

    Article  Google Scholar 

  31. R.P. Kolli, and D.N. Seidman: Acta Mater., 2008, vol. 56, pp. 2073-2088.

    Article  Google Scholar 

  32. D.J. Bacon, and Y.N. Osetsky: Philos. Mag., 2009, vol. 89, pp. 3333-3349.

    Article  Google Scholar 

  33. M. Lozano-Perez, M.L. Jenkins, and J.M. Titchmarsh: Philos. Mag. Lett., 2006, vol. 86, pp. 367-374.

    Article  Google Scholar 

  34. S.Y. Hu, Y.L. Li, and K. Watanabe: Model. Simul. Mater. Sci. Eng., 1999, vol. 7, pp. 641-655.

    Article  Google Scholar 

  35. Z. Chen, N. Kioussis, and N. Ghoniem: Phys. Rev. B, 2009, vol. 80, p. 184104.

    Article  Google Scholar 

  36. T. Hara, N. Maruyama, Y. Shinohara, H. Asahi, G. Shigesato, M. Sugiyama, and T. Koseki: ISIJ Inter., 2009, vol. 49, pp. 1792-1800.

    Article  Google Scholar 

  37. D. Raabe, S. Sandlöbes, J. Millán, D. Ponge, H. Assadi, M. Herbig, and P.P. Choi: Acta Mater., 2013, vol. 61, pp. 6132-6152.

    Article  Google Scholar 

  38. Q.D. Liu, J.F. Gu, C.W. Li, and L.Z. Han. Mater. Character., 2015, under review.

Download references

Acknowledgments

This work was financially supported by the National Basic Research Program of China (No. 2011CB012904), the 111 Project of China (No. B13035), and the China Postdoctoral Science Foundation (No. 2013M541517). We extend our gratitude to Professor Emeritus Shipu Chen at Shanghai Jiaotong University for kind discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianfeng Gu.

Additional information

Manuscript submitted May 28, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Wen, H., Zhang, H. et al. Effect of Multistage Heat Treatment on Microstructure and Mechanical Properties of High-Strength Low-Alloy Steel. Metall Mater Trans A 47, 1960–1974 (2016). https://doi.org/10.1007/s11661-016-3389-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3389-7

Keywords

Navigation