Skip to main content
Log in

Intergranular Strain Evolution in Titanium During Tensile Loading: Neutron Diffraction and Polycrystalline Model

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Intergranular strains due to tensile plastic deformation were investigated in a commercially pure Ti. Neutron diffraction has been used to characterize the evolution of residual elastic strain in grains with different crystallographic orientations. Experimental data have been obtained for the macroscopic stress–strain curve and the intergranular strain evolution in the longitudinal and transverse direction relative to the uniaxial loading axis. The elasto-plastic self-consistent (EPSC) approach was used to model the deformation behavior of the studied material. Comparison between the neutron measurements and the model predictions shows that in most cases the EPSC approach can predict the lattice strain evolution and capture the plastic anisotropy observed in the experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P.G. Partridge: Int. Mater. Rev., 1967, vol. 12, pp. 169–94.

    Article  Google Scholar 

  2. A.K. Singh, R.A. Schwarzer: Z. Metallkd., 2000, vol. 91, pp. 702–16.

    Google Scholar 

  3. H. Conrad: Prog. Mater. Sci., 1981, vol. 26, pp. 123–403.

    Article  Google Scholar 

  4. S. Zaefferer: Mater. Sci. Eng. A, 2003, vol. 344, pp. 20–30.

    Article  Google Scholar 

  5. M.J. Philippe, M. Serghat, P. Van Houtte, C. Esling: Acta Metall. Mater., 1995, vol. 43, pp. 1619–30.

    Article  Google Scholar 

  6. H. Numakura, Y. Minonishi, M. Koiwa: Scripta Metall., 1986, vol. 20, pp. 1581–86.

    Article  Google Scholar 

  7. M.G. Glavicic, A.A. Salemn, S.L. Semiatin: Acta Mater., 2004, vol. 52, pp. 647–655.

    Article  Google Scholar 

  8. A. Akhtar: Metall. Trans. A, 1975, vol. 6, pp. 1105–113.

    Article  Google Scholar 

  9. D.R. Chichili, K.T. Ramesh, K.J. Hemker: Acta Mater. 1998, vol. 46, pp. 1025–43.

    Article  Google Scholar 

  10. A.A. Salem, S.R. Kalidindi, R.D. Doherty: Acta. Mater., 2003, vol. 51, pp. 4225–37.

    Article  Google Scholar 

  11. R. Levy-Tubiana, A. Baczmanski, A. Lodini: Mater. Sci. Eng. A, 2003, vol. 341, pp. 74–86.

    Article  Google Scholar 

  12. B. Clausen, T. Lorentzen, A.M. Bourke, M.R. Daymond: Mater. Sci. Eng. A, 1999, 199, vol. 259, pp. 17–24.

    Article  Google Scholar 

  13. D. Gloaguen, T. Berchi, E. Girard, R. Guillén: Acta Mater., 2007, vol. 55, pp. 4369–79.

    Article  Google Scholar 

  14. J.L.W. Warwick, N.G. Jones, K.M. Rahman, D. Dye: Acta Mater., 2012, vol. 60, pp. 6720–31.

    Article  Google Scholar 

  15. F. Xu, R.A. Holt, M.R. Daymond: Acta Mater., 2008, vol. 56, pp. 3672–3687.

    Article  Google Scholar 

  16. N. Benmhenni, S. Bouvier, R. Brenner, T. Chauveau, B. Bacroix: Mater. Sci. Eng. A, 2013, vol. 573, pp. 222–23.

    Article  Google Scholar 

  17. N.P. Gurao, R. Kapoor, S. Suwas: Acta Mater., 2011, vol. 59, pp. 3431–46.

    Article  Google Scholar 

  18. B.S. Fromm, B.L. Adams, S. Ahmadi, M. Knezevic: Acta Mater. 2009, vol. 57, pp. 2339–48.

    Article  Google Scholar 

  19. X. Wu, S.R. Kalidindi, C. Necker, A.A. Salem: Acta Mater., 2007, vol. 55, pp. 423–32.

    Article  Google Scholar 

  20. M. Bataini: PhD Dissertation, Monash University, Australia, 2008.

  21. C. Larsson, B. Clausen, T.M. Holden, M.A.M. Bourke: Scripta Mater., 2007, vol. 51, pp. 571–75

    Article  Google Scholar 

  22. C.J. Neil, J.A. Wollmershauser, B. Clausen, C.N. Tomé, S.R. Agnew: Int J Plasticity, 2010, vol. 26, pp. 1772–91.

    Article  Google Scholar 

  23. J.W.L. Pang, T.M. Holden, T.E. Mason: Acta Mater., 1998, vol. 46, pp. 1503–18.

    Article  Google Scholar 

  24. P. Dawson, D. Boyce, S. macEwen, R. Rogge: Mater. Sci. Eng. A, 2001, vol. 313, pp. 123–44

    Article  Google Scholar 

  25. A. Baczmanski, N. Hfaiedh, M. François, K. Wierzbanowki: Mater Sci Eng A, 2009, vol. 501, pp. 153–65.

    Article  Google Scholar 

  26. H. Wang, P.D. Wu, C.N. Tomé, J. Wang: Int. J. Solids Struct., 2012, vol. 26, pp. 1772–91.

    Google Scholar 

  27. O. Muransky, M.R. Barnett, V. Luzin, Vogel: Mater. Sci. Eng. A., 2010, vol. 527, pp. 1383–94.

    Article  Google Scholar 

  28. J.W.L. Pang, T.M. Holden, P.A. Turner, T.E. Mason: Acta Mater., 1999, vol. 47, pp. 373–83.

    Article  Google Scholar 

  29. P. Rangaswamy, A.M. Bourke, D.W. Brown, G.C. Kaschner, RB Rogge, MG Stout, CN Tomé: Metall. Trans. A, 2002, vol. 33, pp. 757–63.

    Article  Google Scholar 

  30. D. Gloaguen, M. François, R. Guillen, J. Royer: Phys. Status Solidi a, 2002, vol. 193, pp. 12–25.

    Article  Google Scholar 

  31. J.R. Cho, D. Dye, K.T. Conlon, M.R. Daymond, R.C. Reed: Acta Mater., 2002, vol. 50, pp. 4847–64.

    Article  Google Scholar 

  32. J.L.W. Warwick, J. Coakley, S.L. Raghunathan, R.J. Talling, D. Dye: Acta Mater., 2012, vol. 60, pp. 4117–27.

    Article  Google Scholar 

  33. S.L. Raghunathan, A.M. Stapleton, R.J. Dashwood, M. Jackson, D. Dye: Acta Mater., 2007, vol. 55, pp. 6861–72.

    Article  Google Scholar 

  34. D. Gloaguen, G. Oum, V. Legrand, J. Fajoui, S. Branchu: Acta Mater., 2013, vol. 61, pp. 5779–5790.

    Article  Google Scholar 

  35. W. Kockelmann, L.C. Chapon, P.G. Radelli: Physica B, 2006, vol. 385, pp. 639–43.

    Article  Google Scholar 

  36. Hannon AC (2005), Nucl Instrum Methods Phys Res 551: 88-107.

    Article  Google Scholar 

  37. Wenk HR, Matthies S, Donavan J, Chateigner D (1998), J Appl Cryst 31:262-269.

    Article  Google Scholar 

  38. Pirling T, Bruno G, Withers PJ (2006), Mater Sci Eng A 437:139-144.

    Article  Google Scholar 

  39. Richard D, Ferrand M, Kearley GJ (1996, J Neutron Res 4:33-39.

    Article  Google Scholar 

  40. Kröner E (1961, Acta Metall 9:155-161.

    Article  Google Scholar 

  41. Hill R (1965), J Mech Phys Solids 13: 89-101.

    Article  Google Scholar 

  42. Gloaguen D, Berchi T, Girard E, Guillén R (2008), J Nucl Mater 374:138-146.

    Article  Google Scholar 

  43. Lipinski P, Berveiller M (1989), Int J Plasticity 5:149-172.

    Article  Google Scholar 

  44. Hutchinson W (1970), Proc R Soc London A 319:247-272.

    Article  Google Scholar 

  45. Simmons G, Wang H (1971) Single crystal elastic constants and calculated aggregate properties, Cambridge MA, M.I.T. Press.

    Google Scholar 

  46. Dye D, Stone H J, Reed R C (2001), Curr. Opin. Solid State Mater. Sci. 5: 31-37.

    Article  Google Scholar 

  47. Muransky O, Carr DG, Barnett MR, Oliver EC, Sittner P (2008), Mater Sci Eng A 496: 14-24.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the ISIS and ILL neutron facilities scientific committees for the allocated experimental days on the SALSA (experiment 1-02-30, ILL, France) and GEM (experiment RB1010055, ISIS, UK) instruments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamal Fajoui.

Additional information

Manuscript submitted October 7, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gloaguen, D., Oum, G., Legrand, V. et al. Intergranular Strain Evolution in Titanium During Tensile Loading: Neutron Diffraction and Polycrystalline Model. Metall Mater Trans A 46, 5038–5046 (2015). https://doi.org/10.1007/s11661-015-3073-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3073-3

Keywords

Navigation