Skip to main content
Log in

New Alloying Systems for Sintered Steels: Critical Aspects of Sintering Behavior

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Oxygen-sensitive alloying elements such as Mn, Si, and Cr have a high potential for improving the properties of low alloyed sintered steels while reducing the alloying cost. However, it is necessary to find a way for avoiding, or at least minimizing, the oxidation of these elements especially during the early stages of the sintering cycle. In this study Mn, Si, and Cr were introduced in the form of a master alloy powder designed to be mixed with the iron base powder and provide the final composition of the steel during the sintering process. The reduction/oxidation phenomena taking place during the heating stage were studied by thermogravimetry, dilatometry, and mass spectroscopy, using either reducing (H2) or inert (Ar) atmospheres. The results show how the difference in chemical activity between base iron powder and master alloy causes the so called “internal-getter” effect, by which the reduction of less stable iron oxides leads to oxidation of the elements with higher affinity for oxygen. This effect can be somehow minimized when sintering in H2, since the iron oxides are reduced at lower temperatures at which the reactivity of the elements in the master alloy is lower. However, H2 concentration in the processing atmosphere needs to be carefully adapted to the specific composition of the materials being processed in order to minimize decarburization by methane formation during sintering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. L. Albano-Müller, F. Thümmler and G. Zapf, Powder Metall. 1973, vol. 16, pp. 236-256.

    Article  Google Scholar 

  2. G. Zapf and K. Dalal, Modern Developments in Powder Metallurgy 10, 1977, pp. 129-152.

    Google Scholar 

  3. H. Danninger and C. Gierl, Science of Sintering 2008, vol. 40, pp. 33-46.

    Article  Google Scholar 

  4. M Jaliliziyaean, C. Gierl and H. Danninger, Advances in Powder Metallurgy & Particulate Materials 2008, vol. 5, pp. 72-78.

    Google Scholar 

  5. H. Danninger, M. Jaliliziyaeian, C. Gierl and S. Bengtsson, Materials Science Forum 2011, vol. 672, p. 4.

    Google Scholar 

  6. E. Hryha, C. Gierl, L. Nyborg, H. Danninger and E. Dudrova, Applied Surface Science 2010, vol. 256, pp. 3946-3961.

    Article  Google Scholar 

  7. S. Banerjee, G. Schlieper, F. Thümmler and G. Zapf, Progress in Powder Metallurgy 1980, vol. 13, pp. 143-157.

    Google Scholar 

  8. G. Schlieper and F. Thummler: Powder Metall. Int. 1979, pp. 172, 174–76.

  9. P. Jones and R. Lawcock: Stackpole Limited, US, 1997.

  10. P. Jones and R. Lawcock: Stackpole Limited, US, 1999.

  11. F. Castro, M. Sarasola, F. Baumgaertner, M. Dougan, S. Mitchell, K. Lipp, H.J. Bender, C. Coffin, and J. Dunkley: EuroPM2005, EPMA, ed. EPMA, Pragha, 2005.

  12. P. Beiss, Advances in Powder Metallurgy & Particulate Material 2006, vol. 1, pp. 12-20.

    Google Scholar 

  13. S. Sainz, V. Martinez, M. Dougan, F. Baumgaertner, and F. Castro, Adv. Powder Metall. Part. Mater., 2006, 7:pp. 95-108.

    Google Scholar 

  14. A. Šalak and M. Selecká: Manganese in Powder Metallurgy Steels. Cambridge International Science, Cambridge, 2012.

    Google Scholar 

  15. A. N. Klein, R. Oberacker and F. Thummler, Powder Metallurgy International 1985, vol. 17, pp. 13-16.

    Google Scholar 

  16. A. N. Klein, R. Oberacker and F. Thummler, Powder Metallurgy International 1985, vol. 17, pp. 71-74.

    Google Scholar 

  17. A. N. Klein, R. Oberacker and F. Thummler, Modern Developments in Powder Metallurgy 1985, vol. 16, pp. 141-152.

    Google Scholar 

  18. F. Thummler, A. Klein, and R. Oberacker: Kernforschungszent Karlsruhe, 1983.

  19. F. Thummler, A. Klein, and R. Oberacker: Kernforschungszent Karlsruhe, 1990.

  20. R. Oro, M. Campos, J. M. Torralba and C. Capdevila, Powder Metall. 2012, vol. 55, pp. 294-301.

    Article  Google Scholar 

  21. M.C. Abraham and A. Ghosh: Symposium on Science and Technology of Sponge Iron and Its Conversion to Steel, CSIR—National Metallurgical Laboratory, Jamshedpur, 1973, pp 106–16.

  22. D.M. dos Santos and M.B. Mourao: Scandinavian Journal of Metallurgy 2004, vol. 33, pp. 229-235.

    Article  Google Scholar 

  23. H. Danninger, G. Frauendienst, K. D. Streb and R. Ratzi, Mater. Chem. Phys. 2001, vol. 67, pp. 72-77.

    Article  Google Scholar 

  24. H. Danninger and C. Gierl, Mater. Chem. Phys. 2001, vol. 67, pp. 49-55.

    Article  Google Scholar 

  25. Mohammad Momeni, Christian Gierl and Herbert Danninger, Mater. Chem. Phys. 2011, vol. 129, pp. 209-216.

    Article  Google Scholar 

  26. H. Danninger, C. Gierl, S. Kremel, G. Leitner, K. Jaenicke-Roessler and Y. Yu, Powder Metallurgy Progress 2002, vol. 2, pp. 125-140.

    Google Scholar 

  27. H. Danninger, C. Gierl, G. Leitner and K. Jaenicke-Roessler, P/M Science & Technology Briefs 2004, vol. 6, pp. 10-14.

    Google Scholar 

  28. C. Gierl, M. Jaliliziyaean, H. Danninger, and S. Berngtsson: Euro PM2009, EPMA, ed., EPMA: Copenhague, 2009, pp 305–10.

  29. A. P. Long, S. L. Li, H. Wang and H. Z. Chen, Applied Surface Science 2014, vol. 295, pp. 180-188.

    Article  Google Scholar 

  30. R. Oro, M. Campos, E. Hryha, J. M. Torralba and L. Nyborg, Materials Characterization 2013, vol. 86, pp. 80-91.

    Article  Google Scholar 

  31. D. Chasoglou, E. Hryha and L. Nyborg, Mater. Chem. Phys. 2013, vol. 138, pp. 405-415.

    Article  Google Scholar 

  32. E. Hryha, E. Dudrova and L. Nyborg, Journal of Materials Processing Technology 2012, vol. 212, pp. 977-987.

    Article  Google Scholar 

  33. H. Danninger, M Jaliliziyaean, C. Gierl, E. Hryha, and S. Bengtsson: World PM2010, EPMA, ed., EPMA, Florence, Italy, 2010, pp. 3–10.

  34. J.E. Japka, Journal of Metals 1988, vol. 40, pp. 18-21.

    Google Scholar 

  35. E. Hryha and E. Dudrova, Prog. Powder Metall., Pts 1-2 2007, vol. 534-536, pp. 761-764.

    Google Scholar 

  36. E. Hryha, E. Dudrova and L. Nyborg, Metall. Mater. Trans. A 2010, vol. 41A, pp. 2880-2897.

    Article  Google Scholar 

  37. B. Lindsley and W.B. James, Advances in Powder Metallurgy & Particulate Material 2010, vol. 10, pp. 36-49.

    Google Scholar 

  38. K. Stölzel: Technik-Wörterbuch Metallurgie und Gießereitechnik: russ., dt., Verlag Technik, 1986.

  39. G. Jangg, R. Kieffer, and P. Ettmayer: Sondermetalle, Wien-New York, 1971.

Download references

Acknowledgments

The authors wish to thank Höganäs AB Sweden for the financial support provided through the Höganäs Chair IV, as well as all the members of the project for their very valuable scientific support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquel Oro.

Additional information

From 12th January 2015, Raquel de Oro Calderon will be at Vienna University of Technology.

Manuscript submitted March 24, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oro, R., Campos, M., Gierl-Mayer, C. et al. New Alloying Systems for Sintered Steels: Critical Aspects of Sintering Behavior. Metall Mater Trans A 46, 1349–1359 (2015). https://doi.org/10.1007/s11661-014-2707-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2707-1

Keywords

Navigation