Skip to main content
Log in

Effects of Tungsten Addition on the Microstructure and Mechanical Properties of Microalloyed Forging Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In the current study, the effects of tungsten (W) addition on the microstructure, hardness, and room/low [223 K and 173 K (−50 °C and −100 °C)] temperature tensile properties of microalloyed forging steels were systematically investigated. Four kinds of steel specimens were produced by varying the W additions (0, 0.1, 0.5, and 1 wt pct). The microstructure showed that the addition of W does not have any noticeable effect on the amount of precipitates. The precipitates in W-containing steels were all rich in W, and the W concentration in the precipitates increased with the increasing W content. The mean sizes of both austenite grains and precipitates decreased with the increasing W content. When the W content was equal to or less than 0.5 pct, the addition of W favored the formation of allotriomorphic ferrite, which subsequently promoted the development of acicular ferrite in the microalloyed forging steels. The results of mechanical tests indicated that W plays an important role in increasing the hardness and tensile strength. When the testing temperature was decreased, the tensile strength showed an increasing trend. Both the yield strength and the ultimate tensile strength obeyed an Arrhenius type of relation with respect to temperature. When the temperature was decreased from 223 K to 173 K (from −50 °C to −100 °C), a ductile-to-brittle transition (DBT) of the specimen with 1 pct W occurred. The addition of W favored a higher DBT temperature. From the microstructural and mechanical test results, it is demonstrated that the addition of 0.5 pct W results in the best combination of excellent room/low-temperature tensile strength and ductility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. R.M.K. Honeycombe and H.K.D.H. Bhadeshia: Steels, Microstructure and Properties, 2nd ed., Arnold, London, 1995, p. 189.

  2. D. Whittaker: Metall., 1979, vol. 46, pp. 275-81.

    CAS  Google Scholar 

  3. M. Jahazi and B. Eghbali: J. Mater. Process. Technol., 2001, vol. 113, pp. 594-98.

    Article  CAS  Google Scholar 

  4. G. Krauss: Steels: Processing, Structure, and Performance, ASM International, Ohio, 2005, pp. 230-32.

    Google Scholar 

  5. J. Zhao, J.H. Lee, Y.W. Kim, Z. Jiang, and C.S. Lee: Mater. Sci. Eng. A, 2013, vol. 559, pp. 427-35.

    Article  CAS  Google Scholar 

  6. S. Roy, S. Patra, S. Neogy, A. Laik, S.K. Choudhary, and D. Chakrabarti: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 1845-60.

    Article  Google Scholar 

  7. J.G. Jung, J.S. Park, J. Kim, and Y.K. Lee: Mater. Sci. Eng. A, 2011, vol. 528, pp. 5529-35.

    Article  CAS  Google Scholar 

  8. S. Vervynckt, P. Thibaux, and K. Verbeken: Met. Mater. Int., 2012, vol. 18, pp. 37-46.

    Article  CAS  Google Scholar 

  9. S. Shanmugam, N.K. Ramisetti, R.D.K. Misra, T. Mannering, D. Panda, and S. Jansto: Mater. Sci. Eng. A, 2007, vol. 460-461, pp. 335-43.

    Google Scholar 

  10. Y.M. Kim, S.Y. Shin, H. Lee, B. Hwang, S. Lee, and N.J. Kim: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1731-42.

    Article  CAS  Google Scholar 

  11. G. Huang and K.M. Wu: Met. Mater. Int., 2011, vol. 17, pp. 847-52.

    Article  CAS  Google Scholar 

  12. C.P. Reip, S. Shanmugam, and R.D.K. Misra: Mater. Sci. Eng. A, 2006, vol. 424, pp. 307-17.

    Article  Google Scholar 

  13. B.K. Show, R. Veerababu, R. Balamuralikrishnan, and G. Malakondaiah: Mater. Sci. Eng. A, 2010, vol. 527, pp. 1595-604.

    Article  Google Scholar 

  14. S. Sankaran, Gouthama, S. Sangal, and K.A. Padmanabhan: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 3259–73.

  15. D. Rasouli, Sh. Khameneh Asl, A. Akbarzadeh, and G.H. Daneshi: J. Mater. Process. Technol., 2008, vol. 206, pp. 92–98.

  16. C. Capdevila, F.G. Caballero, and C. García de Andrés: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 661–69.

  17. C. Caminaga, W.J. Botta Filho, M.L.N. Silva, and S.T. Button: Procedia Eng., 2011, vol. 10, pp. 512–17.

  18. M.A. Suarez, M.A. Alvarez-Pérez, O. Alvarez-Fregoso, and J.A. Juarez-Islas: Mater. Sci. Eng. A, 2011, vol. 528, pp. 4924-26.

    Article  CAS  Google Scholar 

  19. R.L. Klueh, D.J. Alexander, and P.J. Maziasz: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 335-345.

    Article  CAS  Google Scholar 

  20. J.I. Suk, C.N. Park, S.H. Hong, and Y.G. Kim: Mater. Sci. Eng. A, 1991, vol. 138, pp. 367–73.

  21. T. Narita, S. Ukai, S. Ohtsuka, M. Inoue: J. Nucl. Mater., 2011, vol. 417, pp. 158-61.

    Article  CAS  Google Scholar 

  22. N.H. Heo and H.C. Lee: Scripta Metall. Mater., 1995, vol. 33, pp. 2031-35.

    Article  CAS  Google Scholar 

  23. J.S. Park, S.J. Kim, and C.S. Lee: Mater. Sci. Eng. A, 2001, vol. 298, pp. 127-36.

    Article  Google Scholar 

  24. S.G. Hong, W.B. Lee, and C.G. Park: J. Nucl. Mater., 2001, vol. 288, pp. 202-207.

    Article  CAS  Google Scholar 

  25. S.B. Kim, K.W. Paik, and Y.G. Kim: Mater. Sci. Eng. A, 1998, vol. 247, pp. 67-74.

    Article  Google Scholar 

  26. W.J. Nam, C.S. Lee, and D.Y. Ban: Scr. Mater., 1997, vol. 36, pp. 1315-20.

    Article  CAS  Google Scholar 

  27. J.R. Yang and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 1989, vol. 5, pp. 93-7.

    CAS  Google Scholar 

  28. I. Madariaga, I. Gutierrez, and H.K.D.H. Bhadeshia: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2187-97.

    Article  CAS  Google Scholar 

  29. K. Inoue, N. Ishikawa, and K. Ishida: ISIJ Int., 2001, vol. 41, pp. 175-82.

    Article  CAS  Google Scholar 

  30. R.M. Poths, R.L. Higginson, and E.J. Palmiere: Scripta Mater., 2011, vol. 44, pp. 147-51.

    Google Scholar 

  31. R.W. Gurry, J. Christakos, and C.D. Stricker: Trans. ASM, 1958, vol. 50, pp. 105-28.

    Google Scholar 

  32. J. Zhao, Z. Jiang, J.S. Kim, and C.S. Lee: Mater. Des., 2013, vol. 49, pp. 252-58.

    Article  CAS  Google Scholar 

  33. J. Zhao, Z. Jiang, and C.S. Lee: Mater. Des., 2013, vol. 47, pp. 227-33.

    Article  CAS  Google Scholar 

  34. O. Grong and D.K. Matlock: Int. Met. Rev., 1986, vol. 31, pp. 27-48.

    Article  CAS  Google Scholar 

  35. D.J. Abson and R.J. Pargeter: Int. Met. Rev., 1986, vol. 31, pp. 141-94.

    Article  CAS  Google Scholar 

  36. Y. Ito and M. Nakanishi: Sumitomo Search, 1976, vol. 15, pp. 42-62.

    CAS  Google Scholar 

  37. R.A. Ricks, P.R. Howell, and G.S. Barritte: J. Mater. Sci., 1982, vol. 17, pp. 732-40.

    Article  CAS  Google Scholar 

  38. J.R. Yang and H.K.D.H. Bhadeshia: in Advances in Welding Science and Technology, S.A. David, ed., ASM, Metals Park, OH, 1987, pp. 187–91.

  39. H.K.D.H. Bhadeshia: Bainite in Steels, 2nd ed., The University Press, Cambridge, London, 2001, p. 239.

  40. H.K.D.H. Bhadeshia and R.W.K. Honeycombe: Steels: Microstructure and Properties, 3rd ed., Elsevier Butterworth-Heinemann, Oxford, 2006, p. 291.

  41. G. Snieder and H.W. Kerr: Can. Metall. Quart., 1984, vol. 23, pp. 315-25.

    Article  CAS  Google Scholar 

  42. S.S. Babu and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 1990, vol. 6, pp. 1005-20.

    Article  CAS  Google Scholar 

  43. M. Strangwood and H.K.D.H. Bhadeshia: in Advances in Welding Science and Technology, S.A. David, ed., ASM, Metals Park, OH, 1987, pp. 209–13.

  44. G.M. Smith: Ph.D. Thesis, University of Cambridge, 1984.

  45. M.K. Graf, H.G. Hillenbrand, and P.A. Peters: Accelerated Cooling of Steel, P.D. Southwick, ed., TMS-AIME, Warrendale, 1985, pp. 349–66.

  46. W.A. Spitzig and A.S. Keh: Acta Metall., 1970, vol. 18, pp. 1021-33.

    Article  CAS  Google Scholar 

  47. M.R. Krishnadev and R. Ghosh: Metall. Trans. A, 1979, vol. 10A, pp. 1941-44.

    CAS  Google Scholar 

  48. S. Naamane, G. Monnet, and B. Devincre: Int. J. Plast., 2010, vol. 26, pp. 84-92.

    Article  CAS  Google Scholar 

  49. W.A. Spitzig and A.S. Keh: Metall. Trans., 1970, vol. 1, pp. 3325-31.

    CAS  Google Scholar 

  50. C. Keller, M.M. Margulies, Z. Hadjem-Hamouche, and I. Guillot: Mater. Sci. Eng. A, 2010, vol. 527, pp. 6758-64.

    Article  Google Scholar 

  51. S. Vaynman, M.E. Fine, S. Lee, and H.D. Espinosa: Scr. Mater., 2006, vol. 55, pp. 351-4.

    Article  CAS  Google Scholar 

  52. P. Spätig, G.R. Odette, and G.E. Lucas: J. Nucl. Mater., 1999, vol. 275, pp. 324-31.

    Article  Google Scholar 

  53. B.A. Hands and H.M. Rosenberg: Acta Metall., 1969, vol. 17, pp. 455-61.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Ministry of Knowledge and Economy, Korea under the program (2009-D-2-A-Y0-B-07) of the Leading Industry Development for Dongnam Economic Region. The authors would like to thank Dr. Tania Silver from the University of Wollongong for assisting in the English editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong Soo Lee.

Additional information

Manuscript submitted June 12, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, J., Lee, T., Lee, J.H. et al. Effects of Tungsten Addition on the Microstructure and Mechanical Properties of Microalloyed Forging Steels. Metall Mater Trans A 44, 3511–3523 (2013). https://doi.org/10.1007/s11661-013-1695-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1695-x

Keywords

Navigation