Skip to main content
Log in

Constitutive Modeling of the Mechanical Properties of V-added Medium Manganese TRIP Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this study, medium Mn transformation-induced plasticity steel with the composition Fe-0.08 pct C-6.15 pct Mn-1.5 pct Si-2.0 pct Al-0.08 pct V was investigated. After intercritical annealing at 1013 K (740 °C), the steel contained coarse-grained ferrite and two ultrafine-grained (UFG) phases: ferrite and retained austenite. The material did not deform by localized Lüders band propagation: it did not suffer from this major problem as most UFG steels do. Localization of plastic flow was shown to be suppressed because of a combination of factors, including a bimodal grain size distribution, a multiphase microstructure, the presence of nanosized vanadium carbide precipitates, and the occurrence of the deformation-induced martensitic transformation of retained austenite. A constitutive model incorporating these effects was developed. The model was used to identify the factors which can lead to a further improvement of the mechanical properties of the UFG medium Mn TRIP steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J. M. Jang, S. J. Kim, N. H. Kang, K. M. Cho, D. W. Suh, Met. Mater. Int., 15 (2009), pp. 909-916.

    Article  CAS  Google Scholar 

  2. D. W. Suh, S. J. Park, T. H. Lee, C. S. Oh, S. J. Kim, Metall. Mater. Trans. A, 41A (2010), pp. 397-408.

    Article  CAS  Google Scholar 

  3. M.J. Merwin: Mater. Sci. Tech. (MS&T), Michigan, 2007, pp. 515–36.

  4. S. Lee, S. J. Lee, B. C. De Cooman, Acta. Mater., 59 (2011), pp. 7546-7553.

    Article  CAS  Google Scholar 

  5. S. Lee, S. J. Lee, B. C. De Cooman, Scripta Mater., 65 (2011), pp. 225-228.

    Article  CAS  Google Scholar 

  6. S. Lee, S. J. Lee, S. S. Kumar, K. Lee, B. C. De Cooman, Metall. Mater. Trans. A, 42A (2011), pp. 3638-3651.

    Article  Google Scholar 

  7. R. L. Miller, Metall. Trans., 3 (1972), pp.515-535.

    Google Scholar 

  8. U. R. Tsuji, N, Y. Minamino, Y. Saito, Scripta Mater., 46 (2002), pp.893-899.

    Article  Google Scholar 

  9. R. Ueji, N. Tsuji, Y. Minamino, Y. Koizumi, Acta Mater, 50 (2002), pp. 4177-4189.

    Article  CAS  Google Scholar 

  10. S. Torizuka, A. Ohmori, and K. Nagai: ISIJ Int., 2004, vol. 6, pp. 1063–71.

  11. T. Hayashi and K. Nagai: Trans. Jpn. Soc., Mech. Eng. A, 2002, vol. 68, p. 1553.

  12. Y. Wang, M. Chen, F. Zhou, E. Ma: Nature, 419 (2002), pp. 912-915.

    Article  CAS  Google Scholar 

  13. N. Tsuji, Y. Ito, Y. Saito, Y. Minamino, Scripta Mater, 47 (2002), pp. 893-899.

    Article  CAS  Google Scholar 

  14. R. D. K. Misra, S. Nayak, S. A. Mali, J. S. Shah, M. C. Somani, L.P. Karjalainen, Metall. Mater. Trans. A, 40A (2009), pp. 2498-2509.

    Article  CAS  Google Scholar 

  15. E. Ma, JOM, 58 (2006), pp. 49-53.

    Article  CAS  Google Scholar 

  16. H. Mecking, U.F. Kocks, Acta Metall., 29 (1981), pp. 1865-1875.

    Article  CAS  Google Scholar 

  17. Y. Estrin, H. Mecking, Acta Metall., 32 (1984), pp. 57-70.

    Article  Google Scholar 

  18. S.-J. Lee. J. Jung, S. Kim, and B.C. De Cooman: Steel Res. Int., 82 (2011), pp. 857–65.

    Article  Google Scholar 

  19. J.G. Speer and B.C. De Cooman: Fundamentals of Steel Product Physical Metallurgy, AIST, 2011.

  20. P. S. Follansbee, Metall. Mater. Trans. A, 41A (2010), pp. 3080-3090.

    Article  Google Scholar 

  21. O. Bouaziz, Y. Estrin, Y. Brechet, J.D. Embury, Scripta Mater., 63 (2010), pp. 477-479.

    Article  CAS  Google Scholar 

  22. D. W. James, G.M. Leak, Phil. Mag., 12 (1965), pp. 491-503.

    Article  CAS  Google Scholar 

  23. T. Gladman, Mater. Sci. Tech-Lond, 15 (1999), pp. 30-36.

    Article  CAS  Google Scholar 

  24. J. P. Hirth, J. Lothe, Theory of Dislocations, Wiley, New York, USA, 1992.

    Google Scholar 

  25. I. Gutierrez: Metalurgija, vol. 11, 2005, p. 201.

  26. G. R. Speich, J. Warlimont, Iron Steel Inst., 206 (1968), p. 385.

    CAS  Google Scholar 

  27. A. Perlade, O. Bouaziz, Q. Furnèmont, Mater. Sci. Eng. A, A356 (2003), pp. 145-152.

    CAS  Google Scholar 

  28. M. Tokizane, N. Matsumura, K. Tsuzaki, T. Maki, I. Tamura, Metall. Trans. A, 13 (1982), pp. 1379-1388.

    Google Scholar 

  29. S. Takaki, K. Takeda, N. Nakada, and T. Tsuchiyama: IAS 2008, Pohang, South Korea, B.C. De Cooman, N. Akdut, H.S. Kim, eds., 2008, p. 107.

  30. S. Rajasekhara, P. J. Ferreira, L. P. Karjalainen, A. Kyröläinen, Metall. Trans. A, 38 (2007), pp. 1202-1210.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the WCU (World Class University) program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (R32-10147 and R31-2008-000-10075-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno C. De Cooman.

Additional information

Manuscript submitted September 10, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S., Estrin, Y. & De Cooman, B.C. Constitutive Modeling of the Mechanical Properties of V-added Medium Manganese TRIP Steel. Metall Mater Trans A 44, 3136–3146 (2013). https://doi.org/10.1007/s11661-013-1648-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1648-4

Keywords

Navigation