Skip to main content
Log in

Self-Consistent Model for Planar Ferrite Growth in Fe-C-X Alloys

  • Atomistic Effects in Migrating InterphaseInterfaces: Recent Progress and Future Study
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A self-consistent model for non-partitioning planar ferrite growth from alloyed austenite is presented. The model captures the evolution with time of interfacial contact conditions for substitutional and interstitial solutes. Substitutional element solute drag is evaluated in terms of the dissipation of free energy within the interface, and an estimate is provided for the rate of buildup of the alloying element “spike” in austenite. The transport of the alloying elements within the interface region is modeled using a discrete-jump model, while the bulk diffusion of C is treated using a standard continuum treatment. The model is validated against ferrite precipitation and decarburization kinetics in the Fe-Ni-C, Fe-Mn-C, and Fe-Mo-C systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C. Zener: J. Appl. Phys., 1949, vol. 20, p. 950.

    Article  CAS  Google Scholar 

  2. J.S. Kirkaldy: Can. J. Phys., 1958, vol. 36, p. 907.

    Article  CAS  Google Scholar 

  3. M. Hillert: ‘‘Paraequilibrium,’’ Report of the Swedish Institute for Metal Research, Stockholm, Sweden, 1953.

  4. G.R. Purdy, D.H. Weichert, and J.S. Kirkaldy: Trans AIME, 1964, vol. 230, p. 1025.

    CAS  Google Scholar 

  5. D.E. Coates: Metall. Trans., 1972, vol. 3, p. 1203.

    Article  CAS  Google Scholar 

  6. A. Hultgren: Trans. ASM, 1947, vol. 39, p. 915.

    Google Scholar 

  7. J.B. Gilmour, G.R. Purdy, and J.S. Kirkaldy: Metall. Trans., 1972, 3, 3213.

    Article  CAS  Google Scholar 

  8. C.R. Hutchinson, A. Fuchsmann, and Y. Brechet: Metall. Mater. Trans. A, 2004, vol. 35A, p. 1221.

    Google Scholar 

  9. K. Oi, C. Lux, and G.R. Purdy: Acta Mater., 2000, vol. 48, p. 2147.

    Article  CAS  Google Scholar 

  10. H. Guo, G.R. Purdy, M. Enomoto, and H.I. Aaronson: Metall. Mater. Trans. A, 2006, vol. 37A, p. 1721.

    Article  CAS  Google Scholar 

  11. J. Odqvist, M. Hillert, and J. Agren: Acta Mater., 2002, vol. 50, p. 3211.

    Article  CAS  Google Scholar 

  12. M. Hillert and B. Sundman: Acta Metall., 1977, vol. 24, p. 731.

    Google Scholar 

  13. H. Guo and M. Enomoto: Metall. Mater. Trans. A, 2007, vol. 38A, p. 1152.

    Article  CAS  Google Scholar 

  14. A. Viardin, B. Appolaire, E. Aeby-Gautier, and M. Goune′: Presentation at ALEMI, Avignon, 2010.

  15. A. Phillion, H.S. Zurob, C.R. Hutchinson, H. Guo, D.V. Malakhov, J. Nakano, and G. Purdy: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1237–42.

    Article  CAS  Google Scholar 

  16. C.R. Hutchinson, H.S. Zurob, and Y. Bréchet: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1711.

    Article  CAS  Google Scholar 

  17. H.S. Zurob, C.R. Hutchinson, Y. Bréchet, H. Seyedrezai, and G.R. Purdy: Acta Mater., 2009, vol. 57, p. 2781.

    Article  CAS  Google Scholar 

  18. H.S. Zurob, C.R. Hutchinson, A. Béché, G.R. Purdy, and Y.J.M. Bréchet: Acta Mater., 2008, vol. 56, p. 2203.

    Article  CAS  Google Scholar 

  19. H.S. Zurob, C.R. Hutchinson, Y. Bréchet, and G.R. Purdy: Solid–Solid Phase Transformations in Inorganic Materials 2005, TMS, Warrendale, PA, 2005, p. 111.

    Google Scholar 

  20. H. Chen and S. van der Zwaag: J. Mater. Sci., 2011, vol. 46, p. 649.

    Google Scholar 

  21. H. Chen and S. van der Zwaag: Phil. Mag. Lett., 2012, vol. 92, p. 86.

  22. J.W. Cahn: Acta Metall., 1962, vol. 10, p. 789.

    Article  CAS  Google Scholar 

  23. M. Hillert: Acta Mater., 1999, Vol. 47, p. 4481.

  24. G.R. Purdy and Y.J.M. Bréchet: Acta Metall. Mater., 1995, vol. 43, p. 3763.

    Article  CAS  Google Scholar 

  25. K.Lücke and H.P. Stüwe: Acta Metall., 1971, vol. 19, p. 1087.

  26. G.R. Purdy: Ph.D. Thesis, McMaster University, Canada, 1962.

  27. M. Hillert: Proceedings ICSTIS, Suppl. Trans. ISIJ, 1971, vol. 11, p. 1153.

  28. H. Oikawa, J.-F. Remy, and A.G. Guy: Trans. ASM1968, vol. 61, p. 110.

  29. B. Sundman, B. Jansson, and J.O Andersson: CALPHAD, 1985, vol. 9, p. 153.

  30. J. Agren: Acta Metall., 1986, vol. 20, p. 1507.

  31. A. Béché, H.S. Zurob, and C.R. Hutchinson: Metall. Mater. Trans. A, 2007, vol. 38A, p. 2950.

    Article  Google Scholar 

  32. M. Hillert: in Lectures on the Theory of Phase Transformation, H.I Aaronson, ed., TMS, Warrendale, PA, 1999, p. 1–33.

  33. C. Sinclair, C.R. Hutchinson, and Y. Bréchet: Metall. Mater. Trans. A, 2007, vol. 38A, p. 821.

    Article  CAS  Google Scholar 

  34. Z.K. Liu: Metall. Mater. Trans. A, 1997, vol. 28A, p. 1625.

  35. F. Fazeli and M. Militzer: Metall. Mater. Trans. A, 2006, vol. 36A, p. 1395.

    Google Scholar 

  36. M. Suehiro, Z.K Liu, and J. Agren: Acta Mater., 1996, vol. 44, p. 4241.

    Article  CAS  Google Scholar 

  37. H. Larsson and A. Borgenstam, Scripta Mater., 2007, vol. 56, p. 61.

    Article  CAS  Google Scholar 

  38. P. Maugis and G. Martin: Phys. Rev. B: Condens. Matter Mater. Phys., 1994, vol. 49, p. 11580.

    Article  CAS  Google Scholar 

  39. P. Bellon and G. Martin: Phys. Rev. B: Condens. Matter Mater. Phys., 2002, vol. 66, p. 1.

    Article  Google Scholar 

  40. C. Qiu, H.S. Zurob, D. Panahi, Y.J.M. Bréchet, G.R. Purdy, and C.R. Hutchinson: unpublished research.

  41. M. Gouné: private communications.

  42. A.R. Troiano and F.T. McGuire: Trans. Am. Soc. Met., 1943, vol. 31, p. 340.

    Google Scholar 

  43. M. Hillert, T. Wada, and H. Wada: JISI, 1967, vol. 205, p. 539.

    Google Scholar 

  44. K.K. Srivastava and J.S. Kirkaldy: Metall. Trans. A, 1982, vol. 13A, p. 2113.

    Google Scholar 

  45. W. Huang: Metall. Trans. A, 1990, vol. 21A, p. 2115.

  46. H. Guo and G.R. Purdy: Metall. Mater. Trans. A, 2008, vol. 39A, p. 950.

Download references

Acknowledgments

HSZ, DP, and GP gratefully acknowledge the financial support of the Natural Science and Engineering Research Council of Canada. CRH gratefully acknowledges the award of a Future Fellowship from the Australian Research Council. The authors also wish to acknowledge many stimulating discussions with the ALEMI community.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. S. Zurob.

Additional information

Manuscript submitted June 30, 2012.

Appendix

Appendix

The phase equilibria between ferrite and austenite in the Fe-Mn system were experimentally investigated by Triano and McGuire,[42] Hillert,[43] and Srivastava and Kirkaldy.[44] The last authors reported the 95 pct confidence interval of their measurements as ±3 pct. The experimental data are summarized in Figure 12 along with the thermodynamic model due to Huang,[45] which is the basis of the TCFE2 database of ThermoCalc. It is clear from the comparison that the pioneering treatment of Huang[45] systematically underestimates the solubility of Mn in ferrite at high temperatures. The discrepancy is, arguably, insignificant for most applications. In the present case, however, the difference between the experiments and model predictions at 1095 K (822 °C) is sufficient to change the interpretation of the decarburization data at 1098 K (825 °C); PE is predicted if the description of Reference 45 is used, while LENP would be predicted if one modified the description to fit the experimental data of Srivastava and Kirkaldy[44] at 1095 K (822 °C). We have, therefore, modified the description of Reference 45 in order to produce a better fit of the experimental data as shown by the dashed curves in Figure 12. The modifications were limited to one parameter, namely

$$ L\left( {{\text{bcc, Fe,Mn:Va}};0} \right) = 4007.8-4.44 \, T\left( {\text{k}} \right)\,{\text{J/mol}} $$
Fig. 12
figure 12

A portion of the Fe-Mn-C phase diagram. Experimental data point along with the calculated phase boundaries using thermodynamic models by Huang,[45] Srivastava and Kirkaldy[44] and the modified version of Huang’s description

This description was used for all calculations on the Fe-Mn-C system in this contribution. A more thorough examination of the thermodynamics, including new experimental data between 1095 K and 1173 K (822 °C and 900 °C), seems necessary in order to reach definitive conclusions as to the operating interfacial conditions during decarburization at high temperatures.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zurob, H.S., Panahi, D., Hutchinson, C.R. et al. Self-Consistent Model for Planar Ferrite Growth in Fe-C-X Alloys. Metall Mater Trans A 44, 3456–3471 (2013). https://doi.org/10.1007/s11661-012-1479-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1479-8

Keywords

Navigation