1.

W. H. Johnson, “On Some Remarkable Changes Produced in Iron and Steel by the Action of Hydrogen and Acids,”

*Proceedings of the Royal Society of London*, vol. 23, pp. 168-179, Jan. 1874.

CrossRef2.

K. Sadananda and A. K. Vasudevan, “Review of Environmentally Assisted Cracking,” *Metallurgical and Materials Transactions A*, vol. 42, no. 2, pp. 279-295, Dec. 2010.

3.

S. Lynch, *Corros. Rev.*, 2012, vol. 30 (3–4).

4.

H. Vehoff and W. Rothe, “Gaseous hydrogen embrittlement in FeSi- and Ni-single crystals,”

*Acta Metallurgica*, vol. 31, no. 11, pp. 1781-1793, Nov. 1983.

CrossRef5.

R.. Oriani, “The diffusion and trapping of hydrogen in steel,”

*Acta Metallurgica*, vol. 18, no. 1, pp. 147-157, Jan. 1970.

CrossRef6.

A. Barnoush and H. Vehoff, “Recent developments in the study of hydrogen embrittlement: Hydrogen effect on dislocation nucleation,”

*Acta Materialia*, vol. 58, no. 16, pp. 5274-5285, Sep. 2010.

CrossRef7.

R. P. Gangloff (2006) Critical Issues in Hydrogen Assisted Cracking of Structural Alloys. Department of Materials Science and Engineering, University of Virginia, Charlottesville

8.

K. N. Solanki, D. K. Ward, and D. J. Bammann, “A Nanoscale Study of Dislocation Nucleation at the Crack Tip in the Nickel-Hydrogen System,” *Metallurgical and Materials Transactions A*, vol. 42, no. 2, pp. 340-347, Oct. 2010.

9.

J. P. Hirth, “Effects of hydrogen on the properties of iron and steel,” *Metallurgical Transactions A*, vol. 11, no. 6, pp. 861-890, Jun. 1980.

10.

H. K. Birnbaum and P. Sofronis, “Hydrogen-enhanced localized plasticity—a mechanism for hydrogen-related fracture,” *Materials Science and Engineering: A*, vol. 176, no. 1–2, pp. 191-202, Mar. 1994.

11.

B. Ladna and H. K. Birnbaum, “A study of hydrogen transport during plastic deformation,”

*Acta Metallurgica*, vol. 35, no. 7, pp. 1775-1778, Jul. 1987.

CrossRef12.

I. M. Robertson, “The effect of hydrogen on dislocation dynamics,”

*Engineering Fracture Mechanics*, vol. 68, no. 6, pp. 671-692, Apr. 2001.

CrossRef13.

H. Kimura and H. Matsui, in *Hydrogen effects in metals: Proceedings of the third international conference on effect of hydrogen on behavior of materials*, Moran, Wyoming, 1981, pp. 192-207.

14.

A. M. Brass and A. Chanfreau, “Accelerated diffusion of hydrogen along grain boundaries in nickel,”

*Acta Materialia*, vol. 44, no. 9, pp. 3823-3831, Sep. 1996.

CrossRef15.

T. Tsuru and R. M. Latanision, “Grain boundary transport of hydrogen in nickel,”

*Scripta Metallurgica*, vol. 16, no. 5, pp. 575-578, May 1982.

CrossRef16.

S.-M. Lee and J.-Y. Lee, “The trapping and transport phenomena of hydrogen in nickel,” *Metallurgical Transactions A*, vol. 17, no. 2, pp. 181-187, Feb. 1986.

17.

K. S. Shin, C. G. Park, and M. Meshii, “Effects of strain rate, purity and thermal history on mechanical behavior of cathodically charged iron,” in *Hydrogen effects in metals: proceedings of the Third International Conference on Effect of Hydrogen on Behavior of Materials*, Moran, Wyoming, 1980, p. 209.

18.

P. Sofronis and J. Lufrano, “Interaction of local elastoplasticity with hydrogen: embrittlement effects,” *Materials Science and Engineering: A*, vol. 260, no. 1–2, pp. 41-47, Feb. 1999.

19.

P. Sofronis, Y. Liang, and N. Aravas, “Hydrogen induced shear localization of the plastic flow in metals and alloys,”

*European Journal of Mechanics* -

*A/Solids*, vol. 20, no. 6, pp. 857-872, Nov. 2001.

CrossRef20.

J. Yao and J. R. Cahoon, “Experimental studies of grain boundary diffusion of hydrogen in metals,”

*Acta Metallurgica et Materialia*, vol. 39, no. 1, pp. 119-126, Jan. 1991.

CrossRef21.

M. Yamaguchi, M. Shiga, and H. Kaburaki, “Grain Boundary Decohesion by Impurity Segregation in a Nickel-Sulfur System,”

*Science*, vol. 307, no. 5708, pp. 393-397, Jan. 2005.

CrossRef22.

M. Yamaguchi, K.-I. Ebihara, M. Itakura, T. Kadoyoshi, T. Suzudo, and H. Kaburaki, “First-Principles Study on the Grain Boundary Embrittlement of Metals by Solute Segregation: Part II. Metal (Fe, Al, Cu)-Hydrogen (H) Systems,” *Metallurgical and Materials Transactions A*, vol. 42A, pp. 330-339, Aug. 2010.

23.

R. W. Fuller

*et al.*, “Failure analysis of AISI 304 stainless steel shaft,”

*Engineering Failure Analysis*, vol. 15, no. 7, pp. 835-846, Oct. 2008.

CrossRef24.

S. B. Gesari, M. E. Pronsato, and A. Juan, “The electronic structure and bonding of H pairs at Σ = 5 BCC Fe grain boundary,”

*Applied Surface Science*, vol. 187, no. 3–4, pp. 207-217, Feb. 2002.

CrossRef25.

A. Pedersen and H. Jónsson, “Simulations of hydrogen diffusion at grain boundaries in aluminum,”

*Acta Materialia*, vol. 57, no. 14, pp. 4036-4045, Aug. 2009.

CrossRef26.

A. Ramasubramaniam, M. Itakura, and E. A. Carter, “Interatomic potentials for hydrogen in α–iron based on density functional theory,”

*Physical Review B*, vol. 79, no. 17, p. 174101, May 2009.

CrossRef27.

M. A. Tschopp, K. N. Solanki, F. Gao, X. Sun, M. A. Khaleel, and M. F. Horstemeyer, “Probing grain boundary sink strength at the nanoscale: Energetics and length scales of vacancy and interstitial absorption by grain boundaries in α-Fe,”

*Physical Review B*, vol. 85, no. 6, p. 064108, Feb. 2012.

CrossRef28.

M. A. Tschopp, M. F. Horstemeyer, F. Gao, X. Sun, and M. Khaleel, “Energetic driving force for preferential binding of self-interstitial atoms to Fe grain boundaries over vacancies,”

*Scripta Materialia*, vol. 64, no. 9, pp. 908-911, May 2011.

CrossRef29.

M. A. Tschopp, K. N. Solanki, M. I. Baskes, F. Gao, X. Sun, and M. F. Horstemeyer, “Generalized framework for interatomic potential design: Application to Fe–He system,”

*Journal of Nuclear Materials*, vol. 425, no. 1–3, pp. 22-32, Jun. 2012.

CrossRef30.

J. Song and W. A. Curtin, “A nanoscale mechanism of hydrogen embrittlement in metals,”

*Acta Materialia*, vol. 59, no. 4, pp. 1557-1569, Feb. 2011.

CrossRef31.

E. Hayward and C. Deo, “Energetics of small hydrogen–vacancy clusters in bcc iron,”

*Journal of Physics: Condensed Matter*, vol. 23, no. 42, p. 425402, Oct. 2011.

CrossRef32.

J. E. Angelo, N. R. Moody, and M. I. Baskes, “Trapping of hydrogen to lattice defects in nickel,”

*Modelling and Simulation in Materials Science and Engineering*, vol. 3, no. 3, pp. 289-307, May 1995.

CrossRef33.

S. Taketomi, R. Matsumoto, N. Miyazaki (2008)

*Acta Materialia* 56(15):3761-3769

CrossRef34.

N.R. Rhodes, M.A. Tschopp, and K.N. Solanki: *arXiv:1206.5385*, June 2012.

35.

M. A. Tschopp and D. L. McDowell, “Asymmetric tilt grain boundary structure and energy in copper and aluminium,”

*Philosophical Magazine*, vol. 87, no. 25, pp. 3871-3892, 2007.

CrossRef36.

M. A. Tschopp and D. L. McDowell, “Structures and energies of Σ 3 asymmetric tilt grain boundaries in copper and aluminium,”

*Philosophical Magazine*, vol. 87, no. 22, pp. 3147-3173, 2007.

CrossRef37.

X. M. Bai, A. F. Voter, R. G. Hoagland, M. Nastasi, and B. P. Uberuaga, “Efficient Annealing of Radiation Damage Near Grain Boundaries via Interstitial Emission,”

*Science*, vol. 327, no. 5973, pp. 1631-1634, Mar. 2010.

CrossRef38.

S. Plimpton, “Fast Parallel Algorithms for Short-Range Molecular Dynamics,”

*Journal of Computational Physics*, vol. 117, no. 1, pp. 1-19, Mar. 1995.

CrossRef39.

J. Friedel, “The distribution of electrons round impurities in monovalent metals,” *Philosophical Magazine Series 7*, vol. 43, no. 337, pp. 153-189, 1952.

40.

M. S. Daw and M. I. Baskes, “Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals,”

*Physical Review B*, vol. 29, no. 12, pp. 6443-6453, Jun. 1984.

CrossRef41.

M. S. Daw and M. I. Baskes, “Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals,”

*Physical Review Letters*, vol. 50, no. 17, pp. 1285-1288, Apr. 1983.

CrossRef42.

M. I. Mendelev, S. Han, D. J. Srolovitz, G. J. Ackland, D. Y. Sun, and M. Asta, “Development of new interatomic potentials appropriate for crystalline and liquid iron,”

*Philosophical Magazine*, vol. 83, no. 35, pp. 3977-3994, 2003.

CrossRef43.

A. P. Sutton and V. Vitek, “On the Structure of Tilt Grain Boundaries in Cubic Metals I. Symmetrical Tilt Boundaries,”

*Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences*, vol. 309, no. 1506, pp. 1-36, Mar. 1983.

CrossRef44.

J. D. Rittner and D. N. Seidman, tilt grain-boundary structures in fcc metals with low stacking-fault energies,”

*Physical Review B*, vol. 54, no. 10, pp. 6999-7015, 1996.

CrossRef45.

B. Polak and G. Ribiere, “Note surla convergence des m′ethodes de directions conjugu′ees,” *Rev. Fr. Imform. Rech. Oper.*, vol. 16, pp. 35-43, 1969.

46.

X. Liu, X. Wang, J. Wang, and H. Zhang, “First-principles investigation of Mg segregation at Σ = 11(113) grain boundaries in Al,”

*Journal of Physics: Condensed Matter*, vol. 17, no. 27, pp. 4301-4308, Jul. 2005.

CrossRef47.

J. R. Rice and J.-S. Wang, “Embrittlement of interfaces by solute segregation,” *Materials Science and Engineering: A*, vol. 107, no. 0, pp. 23-40, Jan. 1989.

48.

A. A. Wheeler, W. J. Boettinger, and G. B. McFadden, “Phase-field model of solute trapping during solidification,”

*Physical Review E*, vol. 47, no. 3, pp. 1893-1909, Mar. 1993.

CrossRef