Metallurgical and Materials Transactions A

, Volume 44, Issue 1, pp 560-576

First online:

Influence of Warm Tempforming on Microstructure and Mechanical Properties in an Ultrahigh-Strength Medium-Carbon Low-Alloy Steel

  • Yuuji KimuraAffiliated withNational Institute for Materials Science Email author 
  • , Tadanobu InoueAffiliated withNational Institute for Materials Science

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


A 0.4 pct C-2 pct Si-1 pct Cr-1 pct Mo steel was quenched and tempered at 773 K (500 °C) and deformed by multi-pass caliber rolling (i.e., warm tempforming). The microstructures and the mechanical properties of the warm tempformed steels were investigated as a function of the rolling reduction. At rolling reductions of more than 28 pct, not only extension of the martensite blocks and/or the packets in the rolling direction (RD) but also a grain subdivision became more significant, and an ultrafine elongated grain (UFEG) structure with a strong 〈110〉//RD fiber deformation texture was formed after 78 pct rolling. The tensile deformation behavior became significantly anisotropic in response to the evolution of UFEG structure. The longitudinal yield strength (σy) of the quenched and tempered sample increased from 1480 to 1860 MPa through the 78 pct rolling, while the transverse σy leveled off at around 1600 MPa up to 28 pct rolling. The transverse true fracture stress was also markedly degraded in contrast to the longitudinal one. Charpy impact properties were enhanced at a rolling reduction of 52 pct or more. The 52 pct-rolled sample underwent a ductile-to-brittle transition in the temperature range from 333 K to 213 K (60 °C to −60 °C), while the 78 pct-rolled sample showed an inverse temperature dependence of the impact toughness because of brittle delamination. The tensile and Charpy impact properties are discussed in association with the microstructural evolution.