Skip to main content
Log in

Modeling of the Effect of Temperature, Frequency, and Phase Transformations on the Viscoelastic Properties of AA 7075-T6 and AA 2024-T3 Aluminum Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The viscoelastic response of commercial aluminum alloys 7075-T6 and 2024-T3 as a function of temperature is presented. Experimental data are obtained with a dynamic-mechanical analyzer (DMA) at different loading frequencies and compared with the available transmission electron microscopy (TEM) and differential scanning calorimetry (DSC) data. The effect of successive microstructural transformations (particle precipitation and redissolution) is revealed. An analytical model is developed, which fits the mechanical response up to 573 K (300 °C). The model takes into account the concentration of Guinier-Preston Zones (GPZ) and metastable precipitates (η′ in AA 7075-T6 and θ′/S′ in AA 2024-T3), allowing us to determine the kinetic parameters of these transformations. The activation energies were previously obtained by several authors from DSC measurements and other techniques, showing considerable dispersion. The presented data, obtained with a completely different technique, allow us to reduce the uncertainty on these data and show the potential of DMA measurements in the study of microstructural transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. The dimensionless transformed fraction or simply transformed fraction is the ratio concentration-to-initial concentration in dissolution processes and the ratio concentration-to-final concentration in precipitation processes.

  2. For the sake of model simplicity, for AA 7075, the third term on the r.h.s. of Eq. [6] accounts for the joint effect of GPZ I and GPZ II. For AA 2024, this term accounts for the joint effect of GPZ I, GPZ II, and GPBZ, and the last term accounts for the joint effect of θ′ and S′. This trade solution stems from the yet unknown isolated effect of each one of these particular phases on the storage modulus, to the author’s knowledge. Thus, for AA 2024, C 1 stands for the combined GPZ I, GPZ II, plus GPBZ concentration, and C 2 accounts for the combined θ′ plus S′ concentration.

  3. For instance, GPZ precipitation for an AlCuMg alloy is completed after 500 minutes of natural aging at RT,[3] and GPZ I in AlZnMg alloys form also by natural aging at RT.[8]

  4. From now on for AA 2024, we will use the term GPZ to refer simultaneously to GPZ and GPBZ.

  5. The term “continuation” is preferred to “beginning” because some η′ precipitates are likely to be already present in AA 7075-T6 at RT.

  6. Slight deviations observed in the vicinity of the upper limit (i.e., the storage modulus maximum) are likely due to the advent of secondary precipitates redissolution, which is not represented in our model.

References

  1. A.S. Nowick and B.S. Berry: Anelastic Relaxation in Crystalline Solids, Academic Press, New York, NY, 1972.

    Google Scholar 

  2. Y.M. Soifer, N.P. Kobelev, L.G. Brodova, A.N. Mannkhin, E. Korin, and L. Soifer: Nanostruct. Mater., 1999, vol. 12, pp. 875–78.

    Article  Google Scholar 

  3. S. Abis, M. Massazza, P. Mengucci, and G. Riontino: Scripta Mater., 2001, vol. 45, pp. 685–91.

    Article  CAS  Google Scholar 

  4. G. Bierwagen: J. Coat. Technol., 2001, vol. 73, pp. 45–52.

    Article  CAS  Google Scholar 

  5. A.J. Vreugdenhil, V.N. Balbyshev, and M.S. Donley: J. Coat. Technol., 2001, vol. 73, pp. 35–43.

    Article  CAS  Google Scholar 

  6. R.M. Chlistovsky, P.J. Heffernan, and D.L. DuQuesnay: Int. J. Fatigue, 2007, vol. 29, pp. 1941–49.

    Article  CAS  Google Scholar 

  7. E.A. Starke and J.T. Staley: Prog. Aerosp. Sci., 1996, vol. 32, pp. 131–72.

    Article  Google Scholar 

  8. R. Ferragut, A. Somoza, and A. Dupasquier: J. Phys. Condens. Matter, 1996, vol. 8, pp. 8945–52.

    Article  CAS  Google Scholar 

  9. T. Engdahl, V. Hansen, P.J. Warren, and K. Stiller: Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 2002, vol. 327, pp. 59–64.

    Article  Google Scholar 

  10. C.E. Macchi, A. Somoza, A. Dupasquier, and I.J. Polmear: Acta Mater., 2003, vol. 51, pp. 5151–58.

    Article  CAS  Google Scholar 

  11. F. Viana, A.M.P. Pinto, H.M.C. Santos, and A.B. Lopes: J. Mater. Process. Technol., 1999, vol. 93, pp. 54–59.

    Article  Google Scholar 

  12. G.W. Smith: Thermochim. Acta, 1998, vol. 317, pp. 7–23.

    Article  CAS  Google Scholar 

  13. S. Abis, P. Mengucci, and G. Riontino: Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 1996, vol. 214, pp. 153–60.

    Article  Google Scholar 

  14. C. Badini, F. Marino, and E. Verne: Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 1995, vol. 191, pp. 185–91.

    Article  Google Scholar 

  15. A.K. Jena, A.K. Gupta, and M.C. Chatuverdi: Acta Metall., 1989, vol. 37, pp. 885–95.

    Article  CAS  Google Scholar 

  16. T.J. Konno, M. Kawasaki, and K. Hiraga: J. Electron Microsc., 2001, vol. 50, pp. 105–11.

    Article  CAS  Google Scholar 

  17. J.I. Gersten and F.W. Smith: The Physics and Chemistry of Materials, 1st ed., Wiley, New York, NY, 2001, pp. 757–67.

    Google Scholar 

  18. J.W. Christian: The Theory of Transformations in Metals and Alloys, 3rd ed., Pergamon, Oxford, U.K., 2002, pp. 532–46.

    Google Scholar 

  19. M.J. Starink and A.M. Zahra: Thermochim. Acta, 1997, vol. 292, pp. 159–68.

    Article  CAS  Google Scholar 

  20. J.M. Papazian: Metall. Trans. A, 1982, vol. 13A, pp. 761–69.

    Google Scholar 

  21. S. Yannacopoulos, S.O. Kasap, A. Hedayat, and A. Verma: Can. Metall. Q., 1994, vol. 33, pp. 51–60.

    Article  CAS  Google Scholar 

  22. U. Batra and S.R. Prabhakar: Trans. Indian Inst. Met., 1995, vol. 48, pp. 55–61.

    CAS  Google Scholar 

  23. E.S. Tankins and W.E. Frazier: Mater. Perform., 1987, vol. 26, pp. 37–44.

    CAS  Google Scholar 

  24. M.J. Starink and P. Vanmourik: Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 1992, vol. 156, pp. 183–94.

    Article  Google Scholar 

  25. H.I. Aaronson and C. Laird: Trans. TMS-AIME, 1968, vol. 242, p. 1437.

    CAS  Google Scholar 

  26. Y.H. Chen and R.D. Doherty: Scripta Metall., 1977, vol. 11, pp. 725–29.

    Article  CAS  Google Scholar 

  27. J.I. Rojas, A. Aguiar, and D. Crespo: Phys. Status Solidi C, 2011, vol. 8, pp. 3111–14.

    Article  CAS  Google Scholar 

  28. T. Das, S. Bandyopadhyay, and S. Blairs: J. Mater. Sci., 1994, vol. 29, pp. 5680–88.

    Article  CAS  Google Scholar 

  29. P.M. Sutton: Phys. Rev., 1953, vol. 91, pp. 816–21.

    Article  CAS  Google Scholar 

  30. G.N. Kamm and G.A. Alers: J. Appl. Phys., 1964, vol. 35, pp. 327–30.

    Article  CAS  Google Scholar 

  31. J.A. Brammer and C.M. Percival: Exp. Mech., 1970, vol. 10, p. 245.

    Article  Google Scholar 

  32. Y.P. Varshni: Phys. Rev. B, 1970, vol. 2, pp. 3952–58.

    Article  Google Scholar 

  33. A. Wolfenden and J.M. Wolla: J. Mater. Sci., 1989, vol. 24, pp. 3205–12.

    Article  CAS  Google Scholar 

  34. T. Ozawa: Thermochim. Acta, 1992, vol. 203, pp. 159–65.

    Article  CAS  Google Scholar 

  35. R. Graf, I.J. Polmear, and G. Thomas: J. Inst. Met., 1958, vol. 86, pp. 535–38.

    Google Scholar 

  36. V. Hansen, K. Stiller, and G. Waterloo: Mater. Sci. Forum, 2002, vols. 396–402, pp. 815–20.

    Article  Google Scholar 

  37. E. Salamci: Mater. Sci. Technol., 2004, vol. 20, pp. 859–63.

    Article  CAS  Google Scholar 

  38. J.M. Papazian: Mater. Sci. Eng., 1986, vol. 79, pp. 97–104.

    Article  CAS  Google Scholar 

  39. J.M. Badia, J.M. Antoranz, and P. Tarin: Boletín Sociedad Española Cerámica Vidrio, 2004, vol. 43, pp. 224–28.

    Article  CAS  Google Scholar 

  40. A. Charai, T. Walther, and C. Alfonso: Acta Mater., 2000, vol. 48, pp. 2751–64.

    Article  CAS  Google Scholar 

  41. H.C. Shih, N.J. Ho, and J.C. Huang: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2479–94.

    Article  CAS  Google Scholar 

  42. E.J. Mittemeijer: J. Mater. Sci., 1992, vol. 27, pp. 3977–87.

    Article  CAS  Google Scholar 

  43. V. Dixit, R.S. Mishra, R.J. Lederich, and R. Talwar: Sci. Technol. Weld. Joi., 2009, vol. 14, pp. 346–55.

    Article  CAS  Google Scholar 

  44. E. Hersent, J.H. Driver, and D. Piot: Scripta Mater., 2010, vol. 62, pp. 455–57.

    Article  CAS  Google Scholar 

  45. MATLAB: The MathWorks Inc., R2010b, Natick, MA, 2010.

  46. J.K. Park and A.J. Ardell: Metall. Trans. A, 1983, vol. 14A, pp. 1957–65.

    CAS  Google Scholar 

  47. M.M. Sharma, M.F. Amateaub, and T.J. Eden: J. Alloy. Compd., 2006, vol. 416, pp. 135–42.

    Article  CAS  Google Scholar 

  48. H.T. Jeong, E. Fleury, W.T. Kim, D.H. Kim, and K. Hono: J. Phys. Soc. Jpn, 2004, vol. 73, pp. 3192–97.

    Article  CAS  Google Scholar 

  49. Y. Du, Y.A. Chang, B.Y. Huang, W.P. Gong, Z.P. Jin, H.H. Xu, Z.H. Yuan, Y. Liu, Y.H. He, and F.Y. Xie: Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 2003, vol. 363, pp. 140–51.

  50. S.K. Maloney, K. Hono, I.J. Polmear, and S.P. Ringer: Micron, 2001, vol. 32, pp. 741–47.

    Article  CAS  Google Scholar 

  51. M. De Sanctis: Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 1991, vol. 141, pp. 103–21.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the MICINN Grant MAT2010-14907 and Generalitat de Catalunya Grant 2009SGR01251.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose I. Rojas.

Additional information

Manuscript submitted May 24, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rojas, J.I., Crespo, D. Modeling of the Effect of Temperature, Frequency, and Phase Transformations on the Viscoelastic Properties of AA 7075-T6 and AA 2024-T3 Aluminum Alloys. Metall Mater Trans A 43, 4633–4646 (2012). https://doi.org/10.1007/s11661-012-1281-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1281-7

Keywords

Navigation