, Volume 43, Issue 6, pp 1845-1860
Date: 10 Jan 2012

Prediction of Inhomogeneous Distribution of Microalloy Precipitates in Continuous-Cast High-Strength, Low-Alloy Steel Slab

Abstract

Spatial distribution in size and frequency of microalloy precipitates have been characterized in two continuous-cast high-strength, low-alloy steel slabs, one containing Nb, Ti, and V and the other containing only Ti. Microsegregation during casting resulted in an inhomogeneous distribution of Nb and Ti precipitates in as-cast slabs. A model has been proposed in this study based on the detailed characterization of cast microalloy precipitates for predicting the spatial distribution in size and volume fraction of precipitates. The present model considers different models, which have been proposed earlier. Microsegregation during solidification has been predicted from the model proposed by Clyne and Kurz. Homogenization of alloying elements during cooling of the cast slab has been predicted following the approach suggested by Kurz and Fisher. Thermo-Calc software predicted the thermodynamic stability and volume fraction of microalloy precipitates at interdendritic and dendritic regions. Finally, classical nucleation and growth theory of precipitation have been used to predict the size distribution of microalloy precipitates at the aforementioned regions. The accurate prediction and control over the precipitate size and fractions may help in avoiding the hot-cracking problem during casting and selecting the processing parameters for reheating and rolling of the slabs.

Manuscript submitted May 26, 2011.