, Volume 42, Issue 11, pp 3491-3508,
Open Access This content is freely available online to anyone, anywhere at any time.
Date: 15 Jun 2011

Microstructural Architecture, Microstructures, and Mechanical Properties for a Nickel-Base Superalloy Fabricated by Electron Beam Melting

Abstract

Microstructures and a microstructural, columnar architecture as well as mechanical behavior of as-fabricated and processed INCONEL alloy 625 components produced by additive manufacturing using electron beam melting (EBM) of prealloyed precursor powder are examined in this study. As-fabricated and hot-isostatically pressed (“hipped”) [at 1393 K (1120 °C)] cylinders examined by optical metallography (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive (X-ray) spectrometry (EDS), and X-ray diffraction (XRD) exhibited an initial EBM-developed γ″ (bct) Ni3Nb precipitate platelet columnar architecture within columnar [200] textured γ (fcc) Ni-Cr grains aligned in the cylinder axis, parallel to the EBM build direction. Upon annealing at 1393 K (1120 °C) (hot-isostatic press (HIP)), these precipitate columns dissolve and the columnar, γ, grains recrystallized forming generally equiaxed grains (with coherent {111} annealing twins), containing NbCr2 laves precipitates. Microindentation hardnesses decreased from ~2.7 to ~2.2 GPa following hot-isostatic pressing (“hipping”), and the corresponding engineering (0.2 pct) offset yield stress decreased from 0.41 to 0.33 GPa, while the UTS increased from 0.75 to 0.77 GPa. However, the corresponding elongation increased from 44 to 69 pct for the hipped components.

Manuscript submitted December 20, 2010.