Skip to main content
Log in

Low-temperature superplasticity of ultra-fine-grained Ti-6Al-4V processed by equal-channel angular pressing

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The low-temperature superplasticity of ultra-fine-grained (UFG) Ti-6Al-4V was established as a function of temperature and strain rate. The equiaxed-alpha grain size of the starting material was reduced from 11 to 0.3 µm (without a change in volume fraction) by imposing an effective strain of ∼4 via isothermal, equal-channel angular pressing (ECAP) at 873 K. The ultrafine microstructure so produced was relatively stable during annealing at temperatures up to 873 K. Uniaxial tension and load-relaxation tests were conducted for both the starting (coarse-grained (CG)) and UFG materials at temperatures of 873 to 973 K and strain rates of 5 × 10−5 to 10−2 s−1. The tension tests revealed that the UFG structure exhibited considerably higher elongations compared to those of the CG specimens at the same temperature and strain rate. A total elongation of 474 pct was obtained for the UFG alloy at 973 K and 10−4 s−1. This fact strongly indicated that low-temperature superplasticity could be achieved using an UFG structure through an enhancement of grain-boundary sliding in addition to strain hardening. The deformation mechanisms underlying the low-temperature superplasticity of UFG Ti-6Al-4V were also elucidated by the load-relaxation tests and accompanying interpretation based on inelastic deformation theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Boyer, G. Welsch, and E.W. Collings: Materials Properties Handbook: Titanium Alloys, ASM INTERNATIONAL. Materials Park, OH, 1994, pp. 483–636.

    Google Scholar 

  2. J.W. Edington, K.N. Melton, and C.P. Cutler: Progr. Mater. Sci., 1976, vol. 21, pp. 63–170.

    Article  Google Scholar 

  3. M. Meier and A.K. Mukherjee: Proc. 119th Annual Meeting of the Shaping and Forming Committee, T.R. McNelly and H.C. Heikkenen, eds., TMS, Warrendale, PA, 1990, pp. 317–32.

    Google Scholar 

  4. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov: Progr. Mater. Sci., 2000, vol. 45, pp. 103–89.

    Article  CAS  Google Scholar 

  5. R.S. Mishra, V.V. Stolyarov, C. Echer, R.Z. Valiev, and A.K. Mukherjee: Mater. Sci. Eng., 2001, vol. A298, pp. 44–50.

    CAS  Google Scholar 

  6. A.V. Sergueeva, V.V. Stolyarov, R.Z. Valiev, and A.K. Mukherjee: Scripta Mater., 2000, vol. 43, pp. 819–24.

    Article  CAS  Google Scholar 

  7. A.V. Sergueeva, V.V. Stolyarov, R.Z. Valiev, and A.K. Mukherjee: Mater. Sci. Eng., 2002, vol. A323, pp. 318–25.

    CAS  Google Scholar 

  8. G.A. Salishchev, R.M. Galeyev, O.R. Valiakhmetov, R.V. Safiullin, R.Y. Lutfullin, O.N. Senkov, F.H. Froes, and O.A. Kaibyshev: J. Mater. Proc. Technol., 2001, vol. 116, pp. 265–68.

    Article  CAS  Google Scholar 

  9. S.N. Patankar, J.P. Escobedo, D.P. Field, G. Salishchev, R.M. Galeyev, O.R. Valiakhmetov, and F.H. Froes: J. Alloys Compounds, 2002, vol. 345, pp. 221–27.

    Article  CAS  Google Scholar 

  10. V.M. Segal: Mater. Sci. Eng. A, 1999, vol. A271, pp. 322–33.

    CAS  Google Scholar 

  11. S. Komura, Z. Horita, M. Furukawa, M. Nemoto, and T.G. Langdon: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 707–16.

    Article  CAS  Google Scholar 

  12. D.H. Shin, B.C. Kim, Y.-S. Kim, and K.-T. Park: Acta Mater., 2000, vol. 48, pp. 2247–55.

    Article  CAS  Google Scholar 

  13. D.P. DeLo and S.L. Semiatin: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2473–81.

    Article  CAS  Google Scholar 

  14. Y.G. Ko, W.S. Jung, D.H. Shin, and C.S. Lee: Scripta Mater., 2003, vol. 48, pp. 197–202.

    Article  CAS  Google Scholar 

  15. L. Lin, Z. Liu, L. Chen, T. Liu, and S. Wu: Met. Mater. Int., 2004, vol. 10, pp. 501–06.

    CAS  Google Scholar 

  16. D. Lee and E.W. Hart: Metall. Trans. A, 1971, vol. 2A, pp. 1245–48.

    Google Scholar 

  17. P.G. Partridge: Metall. Rev., 1968, vol. 12, pp. 169–94.

    Google Scholar 

  18. K.-T. Park, D.-Y. Hwang, S.-Y. Chang, and D.H. Shin: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2859–67.

    Article  CAS  Google Scholar 

  19. S.L. Semiatin and J.J. Jonas: Formability and Workability of Metals: Plastic Instability and Flow Localization, ASM, Metals Park, OH, 1984, pp. 149–98.

    Google Scholar 

  20. Y.W. Chang and E.C. Aifantis: Proc. 2nd Int. Conf. on Constitutive Laws for Engineering Materials—Theory and Applications, Tuscon, AZ, 1987, C.S. Desai, ed., pp. 293–300.

  21. T.K. Ha and Y.W. Chang: Acta Mater., 1998, vol. 46, pp. 2741–49.

    Article  CAS  Google Scholar 

  22. I.I. Novikov, V.K. Portnoy, and V.S. Levchenko: Acta Mater., 1981, vol. 29, pp. 1077–90.

    Article  CAS  Google Scholar 

  23. R.Z. Valiev and T.G. Langdon: Acta Mater., 1993, vol. 41, pp. 949–54.

    Article  CAS  Google Scholar 

  24. Y. N. Kwon and Y.W. Chang: Metall. Mater. Trans. A, 1999, vol. 30A. pp. 2037–47.

    Article  CAS  Google Scholar 

  25. J.S. Kim, Y.W. Chang, and C.S. Lee: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 217–26.

    Article  CAS  Google Scholar 

  26. Y.G. Ko, W.G. Kim, C.S. Lee, and D.H. Shin: Mater. Sci. Eng. A, 2005, vols. 410–411, pp. 156–59.

    Google Scholar 

  27. F.A. Mohamed and T.G. Langdon: Phys. Status Solidi, 1976, vol. 33, pp. 375–81.

    Article  CAS  Google Scholar 

  28. A. Arieli and A. Rosen: Metall. Trans. A, 1977, vol. 8A, pp. 1591–96.

    CAS  Google Scholar 

  29. Z.X. Guo and N. Ridley: Mater. Sci. Technol., 1987, vol. 3, pp. 945–53.

    CAS  Google Scholar 

  30. L. Briottet, J.J. Jonas, and F. Montheillet: Acta Mater., 1996, vol. 44, pp. 1665–72.

    Article  Google Scholar 

  31. T. Seshacharyulu, S.C. Medeiros, W.G. Frazier, and Y.V.R.K. Prasad: Mater. Sci. Eng. A, 2000, vol. A284, pp. 184–94.

    CAS  Google Scholar 

  32. Y. Mishin and Ch. Herzig: Acta Mater., 2000, vol. 48, pp. 589–623.

    Article  CAS  Google Scholar 

  33. T.G. Langdon: Mater. Sci. Eng. A, 1994, vol. A174, pp. 225–30.

    CAS  Google Scholar 

  34. R.Z. Valiev and O.A. Kaibyshev: Acta Mater., 1983, vol. 31, pp. 2121–28.

    Article  CAS  Google Scholar 

  35. J.S. Kim: Ph.D. Thesis, POSTECH, Korea, 1999.

    Google Scholar 

  36. M. Kawazoe, T. Shibata, T. Mukai, and K. Higashi: Scripta Mater., 1997, vol. 36, pp. 699–705.

    Article  CAS  Google Scholar 

  37. S.H. Yu, Y.B. Chun, W.Q. Cao, M.H. Kim, S.W. Chae, S.I. Kwun, D.H. Shin, and S.K. Hwang: Met. Mater. Int., 2005, vol. 11, pp. 101–11.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ko, Y.G., Lee, C.S., Shin, D.H. et al. Low-temperature superplasticity of ultra-fine-grained Ti-6Al-4V processed by equal-channel angular pressing. Metall Mater Trans A 37, 381–391 (2006). https://doi.org/10.1007/s11661-006-0008-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-006-0008-z

Keywords

Navigation