Skip to main content
Log in

Effects of microstructural factors on quasi-static and dynamic deformation behaviors of Ti-6Al-4V alloys with widmanstätten structures

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effects of microstructural factors on the quasi-static tensile and dynamic torsional deformation behaviors in Ti-6Al-4V alloys with Widmanstätten structures were investigated in this study. Dynamic torsional tests were conducted using a torsional Kolsky bar for five Widmanstätten structures, in which microstructural parameters such as colony size and α lamellar spacing were varied by heat treatments, and then the test data were analyzed in relation to microstructures, tensile properties, and fracture mode. Under dynamic torsional loading, maximum shear stress was largely dependent on colony size, whereas shear strain at the maximum shear stress point was on colony size as well as α lamellar spacing. Adiabatic shear bands were found in the deformed area of the fractured torsional specimens, and their width was smallest in the structure whose colony size and α lamellar spacing were both large. The possibility of the adiabatic shear band formation was quantitatively analyzed in relation to microstructural factors. It was the highest in the coarse Widmanstätten structure, which was confirmed by the theoretical critical shear strain (υ c ) condition for the adiabatic shear band formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Eylon, J.A. Hall, C.M. Pierce, and D.L. Ruckel: Metall. Trans. A, 1976, vol. 7A, pp. 1817–26.

    CAS  Google Scholar 

  2. J.P. Hirth and F.H. Froes: Metall. Trans. A, 1977, vol. 8A, pp. 1165–76.

    CAS  Google Scholar 

  3. A. Gysler and G. Lutjering: Metall. Trans. A, 1982, vol. 13A, pp. 1435–43.

    Google Scholar 

  4. H. Margolin, J.C. Williams, J.C. Chesnutt, and G. Lutjering: Proc. 4th Int. Conf. on Ti, Kyoto, Japan, 1980, vol. 1, pp. 169–216.

  5. W. Lee and C. Lin: Mater. Sci. Eng., 1998, vol. A241, pp. 48–59.

    CAS  Google Scholar 

  6. D. Eylon, S. Fujishiro, P.J. Postans, and F.H. Froes: Titanium Technol., 1985, pp. 87–94.

  7. C.C. Chen and J.E. Coyne: Metall. Trans. A, 1976, vol. 7A, pp. 1931–41.

    CAS  Google Scholar 

  8. P.S. Follansbee and G.T. Gray III: Metall. Trans. A, 1989, vol. 20A, pp. 863–74.

    CAS  Google Scholar 

  9. S.V. Kailas, Y.V.R.K. Prasad, and S.K. Biswas: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 2173–79.

    CAS  Google Scholar 

  10. S. Yadav and K.T. Ramesh: Mater. Sci. Eng., 1995, vol. A203, pp. 140–53.

    CAS  Google Scholar 

  11. D-G. Lee, S. Kim, S. Lee, and C. Lee: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 315–24.

    CAS  Google Scholar 

  12. K.A. Hartley, J. Duffy, and R.H. Hawley: J. Mech. Phys. Solids, 1987, vol. 35, pp. 283–301.

    Article  Google Scholar 

  13. A. Marchand and J. Duffy: J. Mech. Phys. Solids, 1988, vol. 36, pp. 251–83.

    Article  Google Scholar 

  14. C.G. Lee, W.J. Park, S. Lee, and K.-S. Shin: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 477–83.

    CAS  Google Scholar 

  15. Metals Handbook, 9th ed., ASM, Metals Park, OH, 1990, vol. 8, pp. 218–24.

  16. S.P. Timothy and I.M. Hutchings: Acta Metall., 1985, vol. 33, pp. 667–76.

    Article  CAS  Google Scholar 

  17. D.-K. Kim, S. Lee, and H.-S. Song: Met. Mater., 1999, vol. 5, pp. 211–23.

    Article  CAS  Google Scholar 

  18. S. Kim and S. Lee: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1753–60.

    CAS  Google Scholar 

  19. F.S. Lin, E.A. Starke, S.B. Chakrabortty, and A. Gysler: Metall. Trans. A, 1984, vol. 15A, pp. 1229–46.

    CAS  Google Scholar 

  20. G. Lütjering: Mater. Sci. Eng., 1998, vol. A243, pp. 32–45.

    Google Scholar 

  21. R.W. Armstrong: Metall. Trans., 1970, vol. 1, pp. 1169–76.

    CAS  Google Scholar 

  22. K. Cho, S. Lee, S.R. Nutt, and J. Duffy: Acta Metall., 1993, vol. 41, pp. 923–32.

    Article  CAS  Google Scholar 

  23. C.G. Lee and S. Lee: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 227–35.

    CAS  Google Scholar 

  24. I.A. Akmoulin, M. Niinomi, and T. Kobayashi: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 1655–66.

    CAS  Google Scholar 

  25. M.A. Meyers: Dynamic Behavior of Materials, John Wiley & Sons, New York, NY, 1994, pp. 448–74.

    Google Scholar 

  26. Y. Bai and B. Dodd: Adiabatic Shear Localization—Occurrence, Theories and Applications, Pergamon Press, New York, NY, 1992, pp. 125–34.

    Google Scholar 

  27. R.S. Culver: in Metallurgical Effects at High Strain Rates, Plenum Press, New York, NY, 1973, pp. 519–30.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, DG., Lee, S., Lee, C.S. et al. Effects of microstructural factors on quasi-static and dynamic deformation behaviors of Ti-6Al-4V alloys with widmanstätten structures. Metall Mater Trans A 34, 2541–2548 (2003). https://doi.org/10.1007/s11661-003-0013-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-003-0013-4

Keywords

Navigation