Skip to main content
Log in

An investigation of dynamic failure in 2.3Ni-1.3Cr-0.17C steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The dominant micromechanisms of dynamic failure initiation in high-strength ductile steels were investigated using 2.3Ni-1.3Cr-0.17C steel. Fracture experiments were conducted in three-point bend and one-point bend configurations. The influence of loading rate on the extent of each micromechanism in the fracture-initiation process was considered. The fracture surfaces consisted of a tunneled region and shear lips. The shear lips are characterized by microvoids. The tunneled region consists of large voids and microvoids that coalesced by impingement. At high loading rates, localized molten zones are observed at the tunnel-shear lip interface. The material-rate sensitivity causes a decrease in the size of the tunneled area at higher loading rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.R. Low, JR.: Eng. Fract. Mech., 1968, vol. 1, pp. 47–53.

    Article  CAS  Google Scholar 

  2. T.B. Cox and J.R. Low, Jr.: Metall. Trans., 1974, vol. 5, pp. 1457–70.

    CAS  Google Scholar 

  3. R.H. Van Stone, T.B. Cox, J.R. Low, Jr., and J.A. Psioda: Int. Met. Rev., 1985, vol. 33, pp. 157–79.

    Google Scholar 

  4. A.S. Argon and J. Im: Metall. Trans. A, 1975, vol. 6A, pp. 839–51.

    CAS  Google Scholar 

  5. A.K. Zurek, W.R. Thissell, D.L. Tonks, R. Hixson, and F. Addessio: J. Phys. IV, 1997, vol. C3, pp. 903–08.

    Google Scholar 

  6. A.S. Argon, J. Im, and R. Safoglu: Metall. Trans. A, 1975, vol. 6A, pp. 825–37.

    CAS  Google Scholar 

  7. S.H. Goods and L.M. Brown: Acta Metall., 1979, vol. 27, pp. 1–15.

    Article  CAS  Google Scholar 

  8. G. Le Roy, J.D. Embury, G. Edward, and M.F. Ashby: Acta Metall., 1981, vol. 29, pp. 1509–22.

    Article  Google Scholar 

  9. P.F. Thomason: Acta Metall., 1985, vol. 33, pp. 1087–95.

    Article  CAS  Google Scholar 

  10. P.F. Thomason: Acta Metall., 1993, vol. 41, pp. 2127–34.

    Article  CAS  Google Scholar 

  11. D.L. Tonks, W.R. Thissell, A.K. Zurek, and R. Hixson: J. Phys. IV, 1997, vol. C3, pp. 841–46.

    Google Scholar 

  12. D.R. Curran, L. Seaman, and D.A. Shockey: Phys. Rep., 1987, vol. 147, pp. 253–388.

    Article  CAS  Google Scholar 

  13. D.W. Yuan, J.F. Zarzour, and M.J. Kleinosky: Mater. Characterization, 1994, vol. 33, pp. 369–75.

    Article  CAS  Google Scholar 

  14. Constraints Effects in Fracture, ASTM STP 1171, E.M. Hackett, K.H. Schwalbe, and R.H. Dodds, Jr.: eds., ASTM, Philadelphia, PA, 1993.

    Google Scholar 

  15. S. Lee, J.W. Rhyu, K. Cho, and J. Duffy: Metall. Trans. A, 1993, vol. 24A, pp. 901–12.

    CAS  Google Scholar 

  16. M.M. Carroll and A.C. Holt: J. Appl. Phys., 1972, vol. 43, pp. 1626–36.

    Article  Google Scholar 

  17. R. Cortes: Int. J. Solids Struct., 1992, vol. 29, pp. 1339–50.

    Article  Google Scholar 

  18. M. Ortiz and A. Molinari: J. Appl. Mech., 1992, vol. 59, pp. 48–58.

    Google Scholar 

  19. W. Tong and G. Ravichandran: J. Appl. Mech., 1995, vol. 62, pp. 633–39.

    Google Scholar 

  20. Y. Huang, J.W. Hutchinson, and V. Tvergaard: J. Mech. Phys. Solids, 1991, vol. 39, pp. 223–41.

    Article  Google Scholar 

  21. S. Zhuang and G. Ravichandran: SM Repot No. 98-4, Graduate Aeronautical Laboratories, Caliofrnia Institute of Technology, Pasadena, CA, 1998.

    Google Scholar 

  22. J.R. Rice, P.C. Paris, and J.G. Merkle: Progress in Flaw Growth and Fracture Toughness Testing, ASTM STP 536, ASTM, Philadelphia PA, 1973, pp. 231–45.

    Google Scholar 

  23. C.F. Shih: J. Mech. Phys. Solids, 1981, vol. 29, pp. 305–26.

    Article  Google Scholar 

  24. J.W. Hutchinson: J. Mech. Phys. Solids, 1968, vol. 16, pp. 13–31.

    Article  Google Scholar 

  25. J.R. Rice and G.F. Rosengren: J. Mech. Phys. Solids, 1968, vol. 16, pp. 1–12.

    Article  Google Scholar 

  26. P.R. Guduru, R.P. Singh, G. Ravichandran, and A.J. Rosakis: J. Mech. Phys. Solids, 1998, vol. 46, pp. 1997–2016.

    Article  CAS  Google Scholar 

  27. R. Narasimhan and A.J. Rosakis: J. Appl. Mech., 1990, vol. 57, pp. 607–16.

    Google Scholar 

  28. R. Narasimhan, A.J. Rosakis, and B. Moran: Int. J. Fract., 1992, vol. 56, pp. 1–24.

    Article  CAS  Google Scholar 

  29. R.M. McMeeking and D.M. Parks: Elastic-Plastic Francture, ASTM STP 668, ASTM, Philadelphia, PA, 1979, pp. 175–94.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venkert, A., Guduru, P.R. & Ravichandran, G. An investigation of dynamic failure in 2.3Ni-1.3Cr-0.17C steel. Metall Mater Trans A 31, 1147–1154 (2000). https://doi.org/10.1007/s11661-000-0110-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-000-0110-6

Keywords

Navigation