Skip to main content
Log in

Expression of dehydrins, HSP70, Cu/Zn SOD, and RuBisCO in leaves of tobacco (Nicotiana tabacum L.) dihaploids under salt stress

  • Abiotic Stress Responses
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Salinity is an abiotic factor that has a negative impact on plant growth and seed germination, leading to limited crop production. The effect of salt stress (100 and 200 mM NaCl) on the expression of dehydrins (DHNs), heat-shock protein 70 (HSP70), superoxide dismutase (Cu/Zn SOD), and ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) was investigated in leaves of tobacco (Nicotiana tabacum L.) F1 hybrid DH10 and four dihaploid lines (207B, 238C, 239K, 244B) under in vitro conditions. After 33 d, the dihaploid lines as well as DH10 showed enhanced expression of 70-kDa DHN in response to 200 mM NaCl stress. This was especially evident in line 207B, which previously proved to be tolerant to salt stress, suggesting that DHNs have an important role in salt stress tolerance. Also, line 207B as well as lines 238C and 244B responded to 200 mM NaCl stress by increased expression of Cu/Zn SOD, indicating its possible role in providing salt stress tolerance. On the other hand, salt stress induced in line 239K resulted in a significantly higher expression of RuBisCO, indicating that differential susceptibility of dihaploids to increased levels of NaCl might be the result of their different genetic traits. Decreased expression of HSP70 in salt-treated tobacco dihaploids indicates that HSP70 is not included in protection against salt stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases in controlling oxidative stress in plants. J Exp Bot 53:1331–1341

    Article  CAS  PubMed  Google Scholar 

  • Andrianov V, Borisjuk N, Pogrebnyak N, Brinker A, Dixon J, Spitsin S, Flynn J, Matyszczuk P, Andryszak K, Laurelli M, Golovkin M, Koprowski H (2010) Tobacco as a production platform for biofuel: overexpression of Arabidopsis DGAT and LEC2 genes increases accumulation and shifts the composition of lipids in green biomass. Plant Biotechnol J 8:277–287

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M (2002) Salt tolerance of cotton: some new advances. Crit Rev Plant Sci 21:1–30

    Article  CAS  Google Scholar 

  • Ashraf M, Foolad MR (2007) Improving plant abiotic-stress resistance by exogenous application of osmoprotectants glycine betaine and proline. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Bavei V, Shiran B, Khodambashi M, Ranjbar A (2011) Protein electrophoretic profiles and physiochemical indicators of salinity tolerance in sorghum (Sorghum bicolor L.). Afr J Biotechnol 10:2683–2697

    CAS  Google Scholar 

  • Boonyapookana B, Parkpian P, Techapinyawat S, DeLaune RD, Jugsuyinda A (2005) Phytoaccumulation of lead by sunflower (Helianthus annuus L.), tobacco (Nicotiana tabacum L.) and vetiver (Vetiveria zizanioides L.). J Environ Sci Health A Tox Hazard Subst Environ Eng 40:117–137

    Article  PubMed  Google Scholar 

  • Bota J, Flexas J, Medrano H (2004) Is photosynthesis limited by decreased Rubisco activity and RuBP content under progressive water stress? New Phytol 162:671–681

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cha-um S, Mosaleeyanon K, Supaibulwatana K, Kirdmanee C (2004) Physiological responses of Thai neem (Azadirachta siamensis Val.) to salt stress for salt-tolerance screening program. Sci Asia 30:17–23

    Article  Google Scholar 

  • Cho EK, Hong CB (2006) Over-expression of tobacco NtHSP70-1 contributes to drought-stress tolerance in plants. Plant Cell Rep 25:349–358

    Article  CAS  PubMed  Google Scholar 

  • Choi YJ, Hur YY, Jung SM, Kim SH, Noh JH, Park SJ, Park KS, Yun HK (2013) Transcriptional analysis of Dehydrin1 genes responsive to dehydrating stress in grapevines. Hortic Environ Biotechnol 54:272–279

    Article  CAS  Google Scholar 

  • Close TJ, Fenton RD, Moonan F (1993) A view of plant dehydrins using antibodies specific to the carboxy terminal peptide. Plant Mol Biol 23:279–286

    Article  CAS  PubMed  Google Scholar 

  • Eyidoğan FI, Öktem HA, Yücel M (2003) Superoxide dismutase activity in salt stressed wheat seedlings. Acta Physiol Plant 25:263–269

    Article  Google Scholar 

  • Fabricant DS, Farnsworth NR (2001) The value of plants used in traditional medicine for drug discovery. Environ Health Perspect 109:69–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng L, Hari Y, Liu G, An B, Yang G, Li Y, Zhu Y (2007) Overexpression of sedoheptulose-1,7-bisphosphatase enhances photosynthesis and growth under salt stress in transgenic rice plants. Funct Plant Biol 34:822–834

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Goodin MM, Zaitlin D, Naidu RA, Lommel SA (2008) Nicotiana benthamiana: its history and future as a model for plant-pathogen interactions. Mol Plant Microbe Interact 21:1015–1026

    Article  CAS  PubMed  Google Scholar 

  • Gupta SC, Sharma A, Mishra M, Mishra RK, Chowdhuri DK (2010) Heat shock proteins in toxicology: how close and how far? Life Sci 86:377–384

    Article  CAS  PubMed  Google Scholar 

  • Hanin M, Ebel FB, Toda C, Takeda S, Masmoudi K (2011) Plant dehydrins and stress tolerance: versatile proteins for complex mechanisms. Plant Signal Behav 6:1503–1509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hara M, Tereashima S, Fukava T, Kuboi T (2003) Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta 217:290–298

    CAS  PubMed  Google Scholar 

  • Hichem H, Naceur EA, Mounir D (2009) Effects of salt stress on photosynthesis, PSII photochemistry and thermal energy dissipation in leaves of two corn (Zea mays L.) varieties. Photosynthetica 47:517–526

    Article  CAS  Google Scholar 

  • Ismail AM, Hall AE, Close TJ (1999a) Allelic variation of a dehydrin gene cosegregates with chilling tolerance during seedling emergence. Proc Natl Acad Sci U S A 96:13566–13570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ismail AM, Hall AE, Close TJ (1999b) Purification and partial characterization of a dehydrin involved in chilling tolerance during seedling emergence of cowpea. Plant Physiol 120:237–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kao WY, Tsai TT, Shih CN (2003) Photosynthetic gas exchange and chlorophyll a fluorescence of three wild soybean species in response to NaCl treatments. Photosynthetica 41:415–419

    Article  CAS  Google Scholar 

  • Kim SY, Lim JH, Park MR, Kim YJ, Park T, Seo YW, Choi KG, Yun SJ (2005) Enhanced antioxidant enzymes are associated with reduced hydrogen peroxide in barley roots under saline stress. J Biochem Mol Biol 38:218–224

    Article  CAS  PubMed  Google Scholar 

  • Kosová K, Prášil IT, Vítámvás P (2013) Protein contribution to plant salinity response and tolerance acquisition. Int J Mol Sci 14:6757–6789

    Article  PubMed  PubMed Central  Google Scholar 

  • Kosová K, Vítámvás P, Prášil IT (2014) Proteomics of stress responses in wheat and barley-search for potential protein markers of stress tolerance. Front Plant Sci 5:711. doi:10.3389/fpls.2014.00711

    PubMed  PubMed Central  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Liang D, Xia H, Wu S, Ma F (2012) Genome-wide identification and expression profiling of dehydrin gene family in Malus domestica. Mol Biol Rep 39:10759–10768

    Article  CAS  PubMed  Google Scholar 

  • Liu CW, Chang TS, Hsu YK, Wang AZ, Yen HC, Wu YP, Wang CS, Lai CC (2014) Comparative proteomic analysis of early salt stress responsive proteins in roots and leaves of rice. Proteomics 14:1759–1775

    Article  PubMed  Google Scholar 

  • Liu CW, Lin KH, Kuo YM (2003) Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Sci Tot Environ 313:77–89

    Article  CAS  Google Scholar 

  • Luo S, Ishida H, Makino A, Mae T (2002) Fe2+-catalyzed site-specific cleavage of the large subunit of ribulose 1,5-bisphosphate carboxylase close to the active site. J Biol Chem 277:12383–12387

    Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    Article  CAS  PubMed  Google Scholar 

  • Marček T, Tkalec M, Vidaković-Cifrek Ž, Ježić M, Ćurković-Perica M (2014) Effect of NaCl stress on dihaploid tobacco lines tolerant to Potato virus Y. Acta Physiol Plant 36:1739–1747

    Article  Google Scholar 

  • Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62:670–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nakano R, Ishida H, Makino A, Mae TT (2006) In vivo fragmentation of the large subunit of ribulose-1,5-bisphosphate carboxylase by reactive oxygen species in an intact leaf of cucumber under chilling-light conditions. Plant Cell Physiol 47:270–276

    Article  CAS  PubMed  Google Scholar 

  • Park SY, Noh KJ, Yoo JH, Yu JW, Lee BW, Kim JG, Seo HS, Paek NC (2006) Rapid upregulation of Dehydrin3 and Dehydrin4 in response to dehydration is a characteristic of drought-tolerant genotypes in barley. J Plant Biol 49:455–462

    Article  CAS  Google Scholar 

  • Patil NM (2011) Synthesis of stress proteins in Carthamus tinctorius L. cv. BHIMA under salt stress. World J Sci Technol 1:43–48

    CAS  Google Scholar 

  • Pelah D, Wang W, Altman A, Shoseyov O, Bartels D (1997) Differential accumulation of water stress-related proteins, sucrose synthase and soluble sugars in Populus species that differ in their water stress response. Physiol Plant 99:153–159

    Article  CAS  Google Scholar 

  • Razavizadeh R, Ehsanpour AA, Ahsan N, Komatsu S (2009) Proteome analysis of tobacco leaves under salt stress. Peptides 30:1651–1659

    Article  CAS  PubMed  Google Scholar 

  • Rokka A, Zhang L, Aro EM (2001) Rubisco activase: an enzyme with a temperature-dependent dual function? Plant J 25:463–471

    Article  CAS  PubMed  Google Scholar 

  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292

    Article  CAS  PubMed  Google Scholar 

  • Šmalcelj B, Ćurković-Perica M (2000) Development of anther-derived flue-cured tobacco dihaploids from PVY resistant DH10 hybrid. Die Bodenkultur 51:11–17

    Google Scholar 

  • Sobhanian H, Aghaei K, Komatsu S (2011) Changes in the plant proteome resulting from salt stress: toward the creation of salt-tolerant crops? J Proteomics 74:1323–1337

    Article  CAS  PubMed  Google Scholar 

  • Sobhanian H, Razavizadeh R, Komatsu S (2010) Proteome analysis of soybean leaves, hypocotyls and roots under salt stress. Proteome Sci 8:1–15

    Article  Google Scholar 

  • Sugihara K, Hanagata N, Dubinsky Z, Baba S, Karube I (2000) Molecular characterization of cDNA encoding oxygen evolving enhancer protein 1 increased by salt treatment in the mangrove Bruguiera gymnorrhiza. Plant Cell Physiol 41:1279–1285

    Article  CAS  PubMed  Google Scholar 

  • Tommasini L, Svensson JT, Rodriguez EM, Wahid A, Malatrasi M, Kato K, Wanamaker S, Resnik J, Close TJ (2008) Dehydrin gene expression provides an indicator of low temperature and drought stress: transcriptome-based analysis of barley (Hordeum vulgare L.). Funct Integr Genomics 8:387–405

    Article  CAS  PubMed  Google Scholar 

  • Tompa P, Banki P, Bokor M, Kamasa P, Kovacs D, Lasanda G, Tompa K (2006) Protein-water and protein-buffer interactions in the aqueous solution of an intrinsically unstructured plant dehydrin: NMR intensity and DSC aspects. Biophys J 91:2243–2249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripepi M, Pöhlschroder MM, Bitonti MB (2011) Diversity of dehydrins in Oleae europaea plants exposed to stress. Open Plant Sci J 5:9–13

    Article  CAS  Google Scholar 

  • Wahid A, Close TJ (2007) Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves. Biol Plant 51:104–109

    Article  CAS  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  CAS  PubMed  Google Scholar 

  • Zou J, Liu A, Chen X, Zhou X, Gao G, Wang W, Zhang X (2009) Expression analysis of nine rice heat shock protein genes under abiotic stresses and ABA treatment. J Plant Physiol 166:851–861

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors thank Dr. Timothy Close from the Department of Botany and Plant Sciences, University of California, for providing the dehydrin antibody.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirna Ćurković-Perica.

Additional information

Editor: Kazuo Watanabe

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marček, T., Tkalec, M., Vidaković-Cifrek, Ž. et al. Expression of dehydrins, HSP70, Cu/Zn SOD, and RuBisCO in leaves of tobacco (Nicotiana tabacum L.) dihaploids under salt stress. In Vitro Cell.Dev.Biol.-Plant 52, 233–240 (2016). https://doi.org/10.1007/s11627-016-9752-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-016-9752-y

Keywords

Navigation