Skip to main content
Log in

Histochemical evaluation of induction of somatic embryogenesis in Passiflora edulis Sims (Passifloraceae)

  • Plant Tissue Culture
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

The aim of this study was to describe the accumulation of reserves during the somatic embryogenesis process in Passiflora edulis Sims FB-300, obtained from mature zygotic embryos, using histochemical methods. Mature zygotic embryos were inoculated in Murashige and Skoog induction media supplemented with 31.06 μM of picloram, 2.22 μM of benzyladenine, and 2.27 μM of thidiazuron. The zygotic embryo explants, at different developmental stages, were collected and fixed in Karnovsky solution and subsequently subjected to dehydration in an ethanol series and embedded in acrylic resin. Transverse and longitudinal sections (5-μm thick) were stained with toluidine blue for anatomical characterization, using Xylidine Ponceau for the detection of total protein, periodic acid-Schiff reagent for neutral polysaccharides, Sudan black B to detect lipids, and Lugol’s reagent for the starch detection. Histological sections revealed the formation of protuberances and globular stage somatic embryos in the cotyledonary region of the zygotic embryo. Histochemical tests revealed the presence of large quantities of protein bodies in zygotic embryos of P. edulis, which were gradually metabolized during somatic embryo development. Lipid bodies and starch grains were identified only after 20 d of culture, suggesting the use of these compounds as energy source for de novo synthesis. The present study describes the anatomical changes and the pattern of reserve accumulation during the somatic embryogenesis process in P. edulis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2

Similar content being viewed by others

References

  • Abdi GH, Hedayat M (2011) Induction of somatic embryogenesis from immature zygotic embryo and immature seed of Royal Poinciana (Delonix regia). World Appl Sci J 13:391–395

    CAS  Google Scholar 

  • Almeida WAB, Mourão-Filho FAAW, Mendes BMJ, Rodriguez APM (2006) Histological characterization of in vitro adventitious organogenesis in Citrus sinensis. Biol Plant 50:321–325

    Article  Google Scholar 

  • Anthony P, Otoni WC, Power JB, Lowe KC, Davey MR (1999) Protoplast isolation, culture, and plant regeneration from Passiflora. In: Hall RD (ed) Plant cell culture protocols. Humana Press, Wageningen, pp 169–181

    Chapter  Google Scholar 

  • Aslam J, Khan SA, Cheruth AJ, Mujib A, Sharma MP, Srivastava PS (2011) Somatic embryogenesis, scanning electron microscopy, histology and biochemical analysis at different developing stages of embryogenesis in six date palm (Phoenix dactylifera L.) cultivars. Saudi J Biol Sci 18:369–380. doi:10.1016/j.sjbs.2011.06.002

    Article  PubMed Central  PubMed  Google Scholar 

  • Branca C, Torelli A, Fermi P, Altamura MM, Bassi M (1994) Early phases in in vitro culture of tomato cotyledons: starch accumulation and protein pattern in relation to the hormonal treatment. Protoplasma 182:59–64

    Article  Google Scholar 

  • Cangahuala-Inocente GC, Steiner N, Santos M, Guerra MP (2004) Morphological analysis and histochemistry of Feijoa sellowiana somatic embryogenesis. Protoplasma 224:33–40

    CAS  PubMed  Google Scholar 

  • Cangahuala-Inocente GC, Villarino A, Seixas D, Dumas-Gaudot E, Terenzi H, Guerra MP (2009) Differential proteomic analysis of developmental stages of Acca sellowiana somatic embryos. Acta Physiol Plant 31:501–514

    Article  CAS  Google Scholar 

  • Fernando JA, Vieira ML, Machado SR, Appezzato-da-Glória B (2007) New insights into the in vitro organogenesis process: the case of Passiflora. Plant Cell Tiss Organ Cult 91:37–44

    Article  Google Scholar 

  • Grigová M, Kubeš M, Drážná N, Rezanka T, Lipavská H (2007) Storage lipid dynamics in somatic embryos of Norway spruce (Picea abies): histochemical and quantitative analyses. Tree Physiol 27:1533–1540

    Article  PubMed  Google Scholar 

  • Gugsa L, Kumlehn J (2011) Somatic embryogenesis and massive shoot regeneration from immature embryo explants of tef. Biotechnol Res Int 2011:1–7. doi:10.4061/2011/309731

    Article  Google Scholar 

  • Jiménez VM (2001) Regulation of in vitro somatic embryogenesis with emphasis on the role of endogenous hormones. Rev Bras Fisiol Veg 13:196–223. doi:10.1590/S0103-31312001000200008

    Article  Google Scholar 

  • Jiménez VM (2005) Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis. Plant Growth Regul 47:91–110

    Article  Google Scholar 

  • Johansen DA (1940) Plant microtechnique. McGraw-Hill, New York

    Google Scholar 

  • Karnovsky MJ (1965) A formaldehyde–glutaraldehyde fixative of high osmolarity for use in electron microscopy. J Cell Biol 27:127–128

    Google Scholar 

  • Kraus JE, Louro RP, Estelita MEM, Arduin M, Braga MG (2012) A célula vegetal. In: Appezzato-da-Glória B, Carmello-Guerreiro SM (eds) Anatomia vegetal, 3rd edn. UFV, Viçosa, pp 31–84 (in Portuguese)

    Google Scholar 

  • Li ZT, Dhekeny S, Dutt M, van Anan M, Tattersll J, Kelley KT, Gray J (2006) Optimizing Agrobacterium-mediated transformation of grapevine. In Vitro Cell Dev Biol Plant 42:220–227

    Article  CAS  Google Scholar 

  • Martin AB, Cuadrado Y, Guerra H, Gallego P, Hita O, Martin L, Dorado A, Villalobos N (2000) Differences in the contents of total sugars, starch and sucrose in embryogenesis and non-embryogenic calli from Medicago arborea L. Plant Sci 154:143–151

    Article  CAS  PubMed  Google Scholar 

  • Moura EF, Ventrella MC, Motoike SY, Sá Junior AQ, Carvalho M, Manfio CE (2008) Histological study of somatic embryogenesis induction on zygotic embryos of macaw palm (Acrocomia aculeata (Jacq.) Lodd. ex Martius). Plant Cell Tiss Organ Cult 95:175–184

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • O’Brien TP, Feder N, McCully ME (1964) Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 59:368–373

  • O’Brien TP, McCully ME (1981) The study of plant structure principles and selected methods. Termacarphi Pty Ltd, Melbourne, 352 pp

  • Otoni WC (1995) Somatic embryogenesis, somatic hybridization, and genetic transformation in Passiflora species. PhD. Dissertation, Federal University of Viçosa, Viçosa MG, Brazil (in Portuguese)

  • Otoni WC, Paim Pinto DL, Rocha DI, Vieira LM, Dias LLC, Silva ML, Silva CV, Lani ERG, Silva LC, Tanaka FAO (2013) Organogenesis and somatic embryogenesis in passionfruit (Passiflora sps.). In: Aslam J, Srivastava OS, Sharma MP (eds) Somatic embryogenesis and gene expression. Narosa Publishing House, New Delhi, pp 1–17

    Google Scholar 

  • Paim Pinto DL, Almeida AM, Rêgo MM, Silva ML, Oliveira EJ, Otoni WC (2011) Somatic embryogenesis from mature zygotic embryos of commercial passionfruit (Passiflora edulis Sims) genotypes. Plant Cell Tiss Organ Cult 107:521–530

    Article  Google Scholar 

  • Pearse AGE (1972) Histochemistry: theoretical and applied, 3rd edn. Churchill-Livingstone, London

    Google Scholar 

  • Pinto G, Silva S, Neves L, Araújo C, Santos C (2010) Histocytological changes and reserve accumulation during somatic embryogenesis in Eucalyptus globulus. Trees Struct Funct 24:763–769

    Article  Google Scholar 

  • Reis LB, Silva ML, Lima ABP, Oliveira MLP, Paim Pinto DL, Lani ERG, Otoni WC (2007) Agrobacterium rhizogenes-mediated transformation of passionfruit species: Passiflora cincinnata and P. edulis f. flavicarpa. Acta Hort 738:425–431

    Article  Google Scholar 

  • Rocha DI, Vieira LM, Tanaka FA, Silva LC, Otoni WC (2012) Somatic embryogenesis of a wild passion fruit species Passiflora cincinnata Masters: histocytological and histochemical evidences. Protoplasma 249:747–758

    Article  PubMed  Google Scholar 

  • Silva ML, Paim-Pinto DL, Guerra MP, Floh EIS, Bruckner CH, Otoni WC (2009) A novel regeneration system for a wild passion fruit species (Passiflora cincinnata Mast.) based on somatic embryogenesis from mature zygotic embryos. Plant Cell Tiss Organ Cult 99:47–54

    Article  Google Scholar 

  • Stamp JA (1987) Somatic embryogenesis in cassava: the anatomy and morphology of the regeneration process. Ann Bot 57:451–459

    Google Scholar 

  • Tozzi HH, Takaki M (2011) Histochemical analysis of seed reserve mobilization in Passiflora edulis Sims fo. flavicarpa O. Deg. (yellow passion fruit) during germination. Braz J Biol 71:701–708

    CAS  PubMed  Google Scholar 

  • Vidal BC (1970) Dichroism in collagen bundles stained with Xylidine Ponceau 2R. Ann Histochem 15:289–296

    Google Scholar 

  • Yang X, Zhang X (2010) Regulation of somatic embryogenesis in higher plants. Plant Sci 29:36–57

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the CAPES for the financial support, the Viveiros Flora Brasil Ltda. (Araguari, MG) for generously providing the Maguary seeds of the Araguari ‘FB-300’ population, and the NMM-UFV (Viçosa, MG) for the use of the electron microscope.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurecilne L. da Silva.

Additional information

Editor: Ewen Mullins

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, G.M., da Cruz, A.C.F., Otoni, W.C. et al. Histochemical evaluation of induction of somatic embryogenesis in Passiflora edulis Sims (Passifloraceae). In Vitro Cell.Dev.Biol.-Plant 51, 539–545 (2015). https://doi.org/10.1007/s11627-015-9699-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-015-9699-4

Keywords

Navigation