Skip to main content
Log in

Initiation, long-term cryopreservation, and recovery of Abies alba Mill. embryogenic cell lines

  • Plant Tissue Culture
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Somatic embryogenesis of Abies alba (Mill.) has significant potential to become an effective method for vegetative propagation of this species. To induce somatic embryogenesis in A. alba, the influence of the mother tree, sampling dates, and cold treatment storage of cones were examined. The initiation frequencies ranged from 1.7% to 16.6%. The sampling date and cone storage, but not the mother tree, had a significant effect on the initiation of embryogenic cultures. Storage of embryogenic cell lines was tested through cryopreservation for 6 yr. Four out of 12 cryostored embryogenic cell lines recovered, and the regeneration of cotyledonary embryos was obtained with two cell lines. The ability of embryogenic cell masses to produce somatic embryos and the mean number of cotyledonary embryos were higher when the maturation protocol was based on embryogenic suspensions dispersed on filter paper. The properly developed germinants were obtained only from maturation media where 32 μM abscisic acid was used, being 16.2% when polyethylene glycol (PEG) was not present and 1.8% when supplemented with 10% (w/v) PEG, respectively. The present study provides evidence that it is possible to cryopreserve A. alba embryogenic cultures while maintaining their maturing ability for the lengthy period (6 yr) needed for progeny testing of field-grown trees. Therefore, our findings are important for further studies and advanced breeding work of the species; however, the conversion of germinants into ex vitro conditions still remains a significant challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Aronen TS, Krajňáková J, Häggman HM, Ryynänen LA (1999) Genetic fidelity of cryopreserved embryogenic cultures of open-pollinated Abies cephalonica. Plant Sci 142:163–172

    Article  CAS  Google Scholar 

  • Bettinger P, Clutter M, Siry J, Kane M, Pait J (2009) Broad implications of southern United States pine clonal forestry on planning and management of forests. Int For Rev 11:331–345

    Google Scholar 

  • Bonga JM, Klimaszewska KK, von Aderkas P (2010) Recalcitrance in clonal propagation, in particular of conifers. Plant Cell Tissue Organ Cult 100:241–254

    Article  Google Scholar 

  • Carneros E, Celestino C, Klimaszewska K, Park YS, Toribio M, Bonga JM (2009) Plant regeneration in stone pine (Pinus pinea L.) by somatic embryogenesis. Plant Cell Tissue Organ Cult 98:165–178

    Article  CAS  Google Scholar 

  • Chalupa V (1991) Somatic embryogenesis and plant regeneration in European silver fir (Abies alba Mill.) and red oak (Quercus rubra L.). Comm Instit Forestalis 17:51–58

    Google Scholar 

  • Cyr DR (1999) Cryopreservation of embryogenic cultures of conifers and its application to clonal forestry. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants, vol 4. Kluwer, Dordrecht, pp 239–261

    Chapter  Google Scholar 

  • Erdelský K, Barančok P (1986a) Cultivating embryos of the silver fir (Abies alba Mill.) in vitro. Acta F. R. N. Univ. Comen. Physiol Plant XXIII:25–29

    Google Scholar 

  • Erdelský K, Barančok P (1986b) Growth induction of callus and organ cultures of the fir (Abies alba Mill.). Acta F. R. N. Univ. Comen. Physiol Plant XXII:41–49

    Google Scholar 

  • Food and Agricultural Organization (FAO) (2010) Global forest resources assessment. www.fao.org/forestry/fra. Accessed 2 June 2012

  • Gajdošová A, Vooková B, Kormuťák A, Libiaková G, Doležel J (1995) Induction, protein composition and DNA ploidity level of embryogenic calli of silver fir and its hybrids. Biol Plant 37:169–176

    Article  Google Scholar 

  • Gupta PK, Durzan DJ, Finkle BJ (1987) Somatic polyembryogenesis in embryogenic cell masses of Picea abies (Norway spruce) and Pinus taeda (loblolly pine) after thawing from liquid nitrogen. Can J For Res 17:1130–1134

    Article  Google Scholar 

  • Grossnickle SC, Cyr D, Polonenko DR (1996) Somatic embryogenesis tissue culture for the propagation of conifer seedlings: a technology comes of age. Tree Planters Notes 47:48–57

    Google Scholar 

  • Greguss L, Longauer R (2000) Šľachtiteľský program jedlí (Abies sp.) založený na medzidruhovej hybridizácii. In: Arboréta-premenlivosť a introdukcia drevín: Zborník referátov z medzinárodnej vedeckej konferencie 30.-31. mája 2000 v Banskej Štiavnici. Lesnícky výskumný ústav Zvolen 2000. p 53–60 (in Slovak with English summary)

  • Häggman HM, Aronen TS, Ryynanen LA (2000) Cryopreservation of embryogenic cultures of conifers. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants, vol 6. Kluwer, Dordrecht, pp 707–728

    Chapter  Google Scholar 

  • Häggman M, Rusanen M, Jokipii S (2008) Cryopreservation of in vitro tissues of deciduous forest trees. In: Read BM (ed) Plant cryopreservation. A practical guide. Springer, Dordrecht, pp 365–386

    Chapter  Google Scholar 

  • Holeksa J, Saniga M, Szwagrzyk J, Czerniak M, Staszyńska K, Kapusta P (2009) A giant tree stand in the West Carpathians—an exception or arelic of formerly widespread mountain European forests? For Ecol Manag 257:1577–1585

    Article  Google Scholar 

  • Hristoforoglu K, Schmidt J, Bolharnordenkampf H (1995) Development and germination of Abies alba somatic embryos. Plant Cell Tiss Organ Cult 40:277–283

    Article  Google Scholar 

  • Högberg KA, Ekberg I, Norell L, von Arnold S (1998) Integration of somatic embryogenesis in a tree breeding programme: a case study with Picea abies. Can J For Res 28:1536–1545

    Article  Google Scholar 

  • Kartha KK, Fowke LC, Leung NL, Caswell KL, Hakman I (1988) Induction of somatic embryos and plantlets from cryopreserved cell cultures of white spruce (Picea glauca). J Plant Physiol 132:529–539

    Article  CAS  Google Scholar 

  • Klimaszewska K, Cyr DR (2002) Conifer somatic embryogenesis: I. Development. Dendrobiology 48:31–39

    Google Scholar 

  • Klimaszewska K, Smith DR (1997) Maturation of somatic embryos of Pinus strobus is promoted by a high concentration of gellan gum. Physiol Plant 100:949–957

    Article  CAS  Google Scholar 

  • Kormuťák A, Salaj T, Vooková B (2006) Storage protein dynamics in zygotic and somatic embryos of white fir. Biologia 61:479–486

    Article  Google Scholar 

  • Krajňáková J, Gömöry D, Häggman H (2008) Somatic embryogenesis in Greek fir. Can J For Res 38:760–769

    Article  Google Scholar 

  • Krajňáková J, Sutela S, Aronen T, Gömöry D, Vianello A, Häggman H (2011) Long-term cryopreservation of Greek fir embryogenic cell lines: recovery, maturation and genetic fidelity. Cryobiology 63:17–25

    Article  PubMed  Google Scholar 

  • Kvaalen H, Daehlen OG, Rognstad T, Grønstad BS, Egertsdotter U (2005) Somatic embryogenesis for plant production of Abies lasiocarpa. Can J For Res 35:1053–1060

    Article  Google Scholar 

  • Lambardi M, De Carlo A (2003) Application of tissue culture to the germplasm conservation of temperate broadleaf trees. In: Jain SM, Ishii K (eds) Micropropagation of woody trees and fruits. Kluwer, Dordrecht, pp 815–840

    Chapter  Google Scholar 

  • Lambardi M, Ozudogru EI, Benelli C (2008) Cryopreservation of embryogenic cultures. In: Read BM (ed) Plant cryopreservation. A practical guide. Springer, Dordrecht, pp 177–210

    Chapter  Google Scholar 

  • Lelu-Walter MA, Bernier-Cardou M, Klimaszewska K (2008) Clonal plant production from self- and cross-pollinated seed families of Pinus sylvestris (L.) through somatic embryogenesis. Plant Cell Tissue Organ Cult 92:31–45

    Article  Google Scholar 

  • Lelu-Walter MA, Paques LE (2009) Simplified and improved somatic embryogenesis of hybrid larches (Larix x eurolepis and Larix x marschlinsii). Perspectives for breeding. Ann Forest Sci 66:104

    Article  Google Scholar 

  • Menzies MI, Aimers-Halliday J (2004) Propagation options for clonal forestry with conifers. In: Walter C, Carlson M (eds) Plantation forest biotechnology for the 21st century. Research Signpost, Kerala, pp 255–274

    Google Scholar 

  • Merkle S, Cunningham M (2011) Southern hardwood varietal forestry: a new approach to short-rotation woody crops for biomass energy. J For 109:7–14

    Google Scholar 

  • Misson JP, Druart P, Panis B, Watillon B (2006) Contribution to the study of the maintenance of somatic embryos of Abies nordmanniana Lk: culture media and cryopreservation method. Propag Ornam Plants 6:17–23

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:493–497

    Article  Google Scholar 

  • Nawrot-Chorabik K (2008) Embryogenic callus induction and differentiation in silver fir (Abies alba Mill.) tissue cultures. Dendrobiology 59:31–40

    CAS  Google Scholar 

  • Nawrot-Chorabik K (2009) Somaclonal variation in embryogenic cultures of silver fir (Abies alba Mill.). Plant Biosyst 143:377–385

    Article  Google Scholar 

  • Nehra NS, Becwar MR, Rottmann WH, Pearson L, Chowdhury K, Chang SJ, Wilde HD, Kodrzycki RJ, Zhang CS, Gause KC, Parks DW, Hinchee MA (2005) Forest biotechnology: innovative methods, emerging opportunities. In Vitro Cell Dev Biol Plant 41:701–717

    Article  CAS  Google Scholar 

  • Nørgaard JV (1997) Somatic embryo maturation and plant regeneration in Abies nordmanniana Lk. Plant Sci 124:211–221

    Google Scholar 

  • Nørgaard JV, Baldursson S, Krogstrup P (1993) Genotypic differences in the ability of embryogenic Abies nordmanniana cultures to survive cryopreservation. Silvae Genet 42:93–97

    Google Scholar 

  • Nørgaard J, Krogstrup P (1991) Cytokinin induced somatic embryogenesis from immature embryos of Abies nordmanniana Lk. Plant Cell Rep 9:509–513

    Google Scholar 

  • Park YS (2002) Implementation of conifer somatic embryogenesis in clonal forestry: technical requirements and deployment considerations. Ann For Sci 59:651–656

    Google Scholar 

  • Park YS, Lelu-Walter MA, Harvengt L, Trontin JF, Maceacheron I, Klimaszewska K, Bonga JM (2006) Initiation of somatic embryogenesis in Pinus banksiana, P. strobus, P. pinaster, and P. sylvestris at three laboratories in Canada and France. Plant Cell Tissue Organ Cult 86:87–101

    Article  Google Scholar 

  • Park YS, Pond SE, Bonga JM (1993) Initiation of somatic embryogenesis in white spruce (Picea glauca)—genetic control, culture treatment effects, and implications for tree breeding. Theor Appl Genet 86:427–436

    Article  Google Scholar 

  • Pond SE, von Aderkas P, Bonga J (2002) Improving tolerance of somatic embryos of Picea glauca to flash desiccation with a cold treatment (desiccation after cold acclimation). In Vitro Cell Dev Biol Plant 38:334–341

    Google Scholar 

  • Rajbhandari N, Stomp AM (1997) Embryogenic callus induction in Fraser fir. HortSci 32:737–738

    Google Scholar 

  • Roberts DR, Sutton BCS, Flinn BS (1990) Synchronous and high-frequency germination of Interior spruce somatic embryos following partial drying at high relative humidity. Can J For Res 68:1086–1090

    Google Scholar 

  • Salaj T, Matušíková I, Panis B, Swennen R, Salaj J (2010) Recovery and characterisation of hybrid firs (Abies alba × A. cephalonica, Abies alba × A. numidica) embryogenic tissues after cryopreservation. CryoLetters 31:206–217

    PubMed  CAS  Google Scholar 

  • Saravitz CH, Blazich FA, Amerson HV (1990) In vitro rooting of hypocotyl cuttings of Fraser fir. HortSci 25:1650–1651

    Google Scholar 

  • Saravitz CH, Blazich FA, Amerson HV (1993) Histology of in vitro adventitious bud development on cotyledons and hypocotyls of fraser fir. J Am Soc Hortic Sci 118:163–167

    Google Scholar 

  • Schuller A, Kirchner-Ness R, Reuther G (2000) Interaction of plant growth regulators and organic C and N components in the formation and maturation of Abies alba somatic embryos. Plant Cell Tissue Organ Cult 60:23–31

    Article  CAS  Google Scholar 

  • Schuller A, Reuther G (1993) Response of Abies alba embryonal suspensor mass to various carbohydrate treatments. Plant Cell Rep 12:199–202

    Article  CAS  Google Scholar 

  • Schuller A, Reuther G, Geier T (1989) Somatic embryogenesis from seed explants of Abies alba. Plant Cell Tissue Organ Cult 17:53–58

    Google Scholar 

  • Stasolla C, Yeung EC (2003) Recent advances in conifer somatic embryogenesis: improving somatic embryo quality. Plant Cell Tissue Organ Cult 74:15–35

    Article  CAS  Google Scholar 

  • SAS (1998) SAS/STAT® User's Guide. Release 6.03 Edition. SAS Institute, Cary

  • von Aderkas P, Bonga JM (2000) Influencing micropropagation and somatic embryogenesis in mature trees by manipulation of phase change, stress and culture environment. Tree Physiol 20:921–928

    Article  Google Scholar 

  • Vooková B, Gajdošová A, Matúšová R (1998) Somatic embryogenesis in Abies alba x Abies alba and Abies alba x Abies nordmanniana hybrids. Biol Plant 40:523–530

    Article  Google Scholar 

  • Vooková B, Kormuťák A (2007) Abies biotechnology—research and development of tissue culture techniques for vegetative propagation. Global Science Books, pp 39–46

  • Vooková B, Kormuťák A (2009) Improved plantlet regeneration from open-pollinated families of Abies alba trees of Dobro primeval forest and adjoining managed stand via somatic embryogenesis. Biologia 64:1136–1140

    Article  Google Scholar 

  • Whetten RW, Kellison R (2010) Research gap analysis for application of biotechnology to sustaining US forests. J For 108:193–201

    Google Scholar 

  • Zoglauer K, Reuther G (1996) Somatische embryogenese bei der weisstanne (Abies alba Mill.). Mitt Landesanst Wald Forstwirtschaft 11:123–135 (in German)

    Google Scholar 

Download references

Acknowledgments

Dr. Jan Bonga is acknowledged for his valuable comments on the manuscript. We especially thank Ms. Danica Trangošová from the National Forestry Centre, Forest Research Institute, Slovakia, for her excellent technical assistance. The research was funded by National Forestry Centre, Forest Research Institute, Zvolen, Slovakia, Finnish Forest Research Institute, Punkaharju Research Unit, University of Oulu, Department of Biology, Finland, University of Udine, Department of Agricultural and Environmental Science, Italy, and by SoMoPro programme, financed by the European Community within the Seventh Framework Programme (FP/2007-2013) under Grant Agreement No. 229603 and was cofinanced by the South Moravian Region.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana Krajňáková.

Additional information

Editor: J. Forster

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krajňáková, J., Bertolini, A., Gömöry, D. et al. Initiation, long-term cryopreservation, and recovery of Abies alba Mill. embryogenic cell lines. In Vitro Cell.Dev.Biol.-Plant 49, 560–571 (2013). https://doi.org/10.1007/s11627-013-9512-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-013-9512-1

Keywords

Navigation