Skip to main content

Advertisement

Log in

Cryoconservation of South African plant genetic diversity

  • Invited Review
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

South Africa has a rich flora which exhibits among the highest species density in the world, distributed across nine biomes that support an impressive diversity of animal life. However, a variety of human actions, invasion by alien species, natural disturbances and climate change collectively impact negatively on the great diversity of both plant and animal species. In situ conservation has long been practised, primarily in nature reserves, complemented by ex situ conservation in national botanic gardens, but in vitro plant conservation is not common. In the context of animal biodiversity conservation, the Wildlife Biological Resource Centre of the National Zoological Gardens utilises cryobanking as one of its major focuses and is now poised to expand as the repository for the cryoconservation of plant germplasm, particularly for indigenous recalcitrant-seeded and poor-seeding species. However, there are particular problems associated with successful germplasm cryostorage of such tropical and subtropical plants. As we see the science and application of cryobiology and cryoconservation as cross-cutting and transdisciplinary, we have entrained formal networking among scientists offering a range of specialisations aimed at a deeper understanding of common problems and practical outcomes to facilitate both plant and animal biobanking. The endeavours are aimed at elucidating the basis of both successes and failures in our efforts to attain optimal outcomes. With focus on best practices, standard operating procedures, validation and risk management for cryopreserved and cold-stored plant and animal material, our ultimate aim is to facilitate restoration by the safe reintroduction of indigenous species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

Notes

  1. http://www.agr.kuleuven.ac.be/dtp/tro/CRYMCEPT/.

  2. http://www.agr.kuleuven.ac.be/dtp/tro/cost871/Home.htm.

  3. In this context, non-orthodox seeds include all that do not naturally undergo substantial dehydration as a developmental event and are essentially more (recalcitrant) or less (so-called intermediate) desiccation-sensitive. All are short-lived.

  4. The following cryoprotectants were used singly and in combination: glycerol, sucrose, dextran, PVP, DMSO. Results reported here are the best that were obtained for each species.

References

  • ARC. National collection of fungi. http://www.arc.agric.za/. Cited 3 Jan 2010; 2009a.

  • ARC. Plant pathogenic and plant protecting bacteria. http://www.arc.agric.za/. Cited 3 Jan 2010; 2009b.

  • Barnard R.; Newby T. Sustainability of terrestrial ecosystems. In: National State of the Environment Report—South Africa. http://www.environment.gov.za/enviro-info/sote/nsoer/issues/land/. Cited 1 Jan 2010; 1999.

  • Benson E. E. (ed) Plant conservation biotechnology. Taylor and Francis, London; 1999.

  • Benson E. E. Cryoconserving algae and plant diversity: historical perspectives and future challenges. In: Fuller B.; Lane N.; Benson E. E. (eds) Life in the frozen state. CRC, London, pp 299–328; 2004.

    Chapter  Google Scholar 

  • Benson E. E. Cryopreservation of phytodiversity: a critical appraisal of theory and practice. Critical Review in Plant Sciences 27: 141–219; 2008.

    Article  CAS  Google Scholar 

  • Berjak P. Current status of cryopreservation research and future perspectives of its application in South Africa. In: Engelmann F.; Takagi H. (eds) Cryopreservation of tropical germplasm: current research progress and application. Jircas International Agriculture Series no. 8. IPGRI, Rome; 2000.

    Google Scholar 

  • Berjak P.; Farrant J. M.; Mycock D. J.; Pammenter N. W. Recalcitrant (homoiohydrous) seeds: the enigma of their desiccation-sensitivity. Seed Sci & Technol 18: 297–310; 1990.

    Google Scholar 

  • Berjak P.; Kioko J. I.; Walker M.; Mycock D. J.; Wesley-Smith J.; Watt P.; Pammenter N. W. Cryopreservation—an elusive goal? In: Marzalina M.; Khoo K. C.; Jayanthi N.; Tsan F. Y.; Krishnapillay B. (eds) Recalcitrant seeds. FRIM, Kuala Lumpur, pp 132–139; 1999b.

    Google Scholar 

  • Berjak P.; Mycock D. J. Calcium, with magnesium, is essential for normal seedling development from partially-dehydrated recalcitrant axes: a study on Trichilia dregeana Sond. Seed Sci Res 14: 217–231; 2004.

    Article  CAS  Google Scholar 

  • Berjak P.; Pammenter N. W. Biotechnological aspects of non-orthodox seeds: an African perspective. S Afr J Bot 70: 102–108; 2004.

    Google Scholar 

  • Berjak P.; Pammenter N. W. From Avicennia to Zizania: seed recalcitrance in perspective. Ann Bot 101: 213–228; 2008.

    Article  PubMed  Google Scholar 

  • Berjak P.; Walker M.; Watt M. P.; Mycock D. J. Experimental parameters underlying failure or success in plant germplasm cryopreservation: a case study on zygotic axes of Quercus robur L. CryoLetts 20: 251–262; 1999a.

    Google Scholar 

  • Börner A. Preservation of plant genetic resources in the biotechnology era. Biotech J 1: 1393–1404; 2006.

    Article  Google Scholar 

  • Cherry M. South Africa—serious about biodiversity science. PloS Biol 3(5): e145; 2005.

    Article  PubMed  Google Scholar 

  • Day J. G.; Benson E. E.; Fleck R. A. In vitro culture and conservation of microalgae: applications for aquaculture, biotechnology and environmental research. In vitro Cell Dev. Biol.—Plant 35: 127–136; 1999.

    Article  CAS  Google Scholar 

  • DEAT (Department of Environment & Tourism). South Africa’s National Biodiversity Strategy and Action Plan, Department of Environment & Tourism. http://www.cbd.int/doc/world/za/za-nbsap. First cited Jul 2008; 2005.

  • Department of Science and Technology (DST). Innovation towards a knowledge-based economy. Ten-year plan for South Africa. http://www.esastap.org.za/esastap/pdfs/ten_year_plan. Cited 6 Jan 2010; 2008.

  • Department of Science and Technology (DST). Technology for sustainable livelihoods. www.dst.gov.za/other/gpc/MedPlantsActivities.pdf. Cited 2 Jan 2010; 2010.

  • Engelmann F. Use of biotechnologies for conserving plant biodiversity. Acta Hort 812: 63–82; 2009.

    CAS  Google Scholar 

  • Gonzalez-Arnao M. T.; Engelmann F. Cryopreservation of plant germplasm using the encapsulation-dehydration technique: review and case study on sugarcane. CryoLetts 27: 155–168; 2006.

    CAS  Google Scholar 

  • Goveia M.; Kioko J. I.; Berjak P. Developmental status is a critical factor in the selection of excised recalcitrant axes as explants for cryopreservation: a study on Trichilia dregeana Sond. Seed Sci Res 14: 241–248; 2004.

    Article  Google Scholar 

  • Hannah L.; Midgley G. F.; Lovejoy T.; Bond W. J.; Bush M.; Lovett J. C.; Scott D.; Woodward F. I. Conservation of biodiversity in a changing climate. Conserv Biol 16: 264–268; 2002.

    Article  Google Scholar 

  • Harding K. Genetic integrity of cryopreserved plant cells: a review. CryoLetts 25: 3–22; 2004.

    Google Scholar 

  • Harding K.; Johnston J. W.; Benson E. E. Exploring the physiological basis of cryopreservation success and failure in clonally propagated in vitro crop plant germplasm. Agriculture and Food Science 18: 3–16; 2009.

    Article  Google Scholar 

  • Hiemstra S. J.; van der Lende T.; Woelders H. The potential of cryopreservation and reproductive technologies for animal genetic resources conservation strategies. In: Ruane J.; Sonnino A. (eds) The role of biotechnology in exploring and protecting agricultural genetic resources. FAO, Rome, pp 45–59; 2006.

    Google Scholar 

  • Hitchcock A. Integrated conservation at Kirstenbosch National Botanical Gardens. Samara 10_January–June. www.kew.org/msbp/samara; 2006.

  • Holt W. V. Cryobiology, wildlife conservation and reality. CryoLetts 29: 43–52; 2008.

    Google Scholar 

  • ISBER (International Society for Biological and Environmental Repositories). Best practices for repositories. Cell Preservation Technology 6: 3–58; 2008.

    Article  Google Scholar 

  • Jackson P. W.; Kennedy K. The global strategy for plant conservation: a challenge and opportunity for the international community. Trends Plant Sci 14: 578–580; 2009.

    Article  Google Scholar 

  • Johnston J.; Harding K.; Benson E. E. Detection of 8-hydroxy-2′-deoxyguanosine as a marker of DNA damage in germplasm and DNA exposed to cryogenic treatments. CryoLetters 31: 1–13; 2010.

    PubMed  CAS  Google Scholar 

  • Keller E. R. J.; Kaczmarczyk A.; Senula A. Cryopreservation for plant genebanks—a matter between high expectations and cautious reservation. CryoLetts 29: 53–62; 2008.

    Google Scholar 

  • King N.; Rosmarin T.; Friedmann Y.; Reyers B.; Owen-Smith N.; Kock E. Biodiversity and ecosystem health. In: South Africa environmental outlook, revised edition. Department of Environmental Affairs and Tourism, Pretoria, Republic of South Africa, Africa: 107–140; 2007.

  • Kioko J. I.; Berjak P.; Pammenter N. W. Responses to dehydration and conservation of the non-orthodox seeds of Warburgia salutaris. S Afr J Bot 69: 532–539; 2003.

    Google Scholar 

  • Kioko J. I.; Berjak P.; Pammenter N. W. Viability and ultrastructural responses of seeds and embryonic axes of Trichilia emetica to different dehydration and storage conditions. S Afr J Bot 71: 167–176; 2006.

    Article  Google Scholar 

  • Kioko J.; Berjak P.; Pritchard H.; Daws M. Studies of post-shedding behaviour and cryopreservation of seeds of Warburgia salutaris, a highly-endangered medicinal plant indigenous to tropical Africa. In: Marzalina M.; Khoo K. C.; Jayanthi N.; Tsan F. Y.; Krishnapillay B. (eds) Recalcitrant seeds. FRIM, Kuala Lumpur, pp 365–371; 1999.

    Google Scholar 

  • Kioko J.; Berjak P.; Pritchard H.; Daws M. Seeds of the African pepper bark (Warburgia salutaris) can be cryopreserved after rapid dehydration in silica gel. In: Engelmann F.; Takagi H. (eds) Cryopreservation of tropical germplasm: current research progress and application. IPGRI, Rome, pp 371–377; 2000.

    Google Scholar 

  • Kramer A. T.; Havens K. Plant conservation genetics in a changing world. Trends Plant Sci 14: 599–607; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Li D.-Z.; Pritchard H. W. The science and economics of ex situ plant conservation. Trends Plant Sci 14: 614–621; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Lynch P. T.; Benson E. E.; Harding K. Invited Commentary: Climate change: the role of ex situ and cryo-conservation in the future security of economically important, vegetatively propagated plants. J Hortic. Sci. Biotechnol. 82: 157–160; 2007.

    Google Scholar 

  • Manamela M. T. Morphological characterisation and cryopreservation of sweet potato Ipomoea batatas (L.) Lam., Master’s thesis, accessions at the NPGRC of South Africa. Stud.epsilon.slu.se/653; 2009.

  • Mucina L.; Rutherford M. C. (eds). The vegetation of South Africa, Lesotho and Swaziland. Strelitzia 19. South African National Biodiversity Institute, Pretoria, South Africa. Map data from accompanying CD; 2006.

  • Muldrew K.; Acker J. P.; Elliot J. A. W.; McGann L. E. The water to ice transition: implications for living cells. In: Fuller B.; Lane N.; Benson E. E. (eds) Life in the frozen state. CRC, London, pp 67–108; 2004.

    Chapter  Google Scholar 

  • Müller J.; Day J. G.; Harding K.; Hepperle D.; Lorenz M.; Friedl T. Assessing genetic stability of a range of terrestrial microalgae after cryopreservation using amplified fragment length polymorphism (AFLP). Amer J of Bot 94: 799–808; 2007.

    Article  Google Scholar 

  • Mycock D. J. Addition of calcium and magnesium to a glycerol and sucrose cryoprotectant solution improves the quality of plant embryo recovery from cryostorage. CryoLetts 20: 77–82; 1999.

    CAS  Google Scholar 

  • Mycock D. J.; Blakeway F. C.; Watt M. P. General applicability of in vitro storage technology to the conservation and maintenance of plant germplasm. S Afr J Bot 70: 31–36; 2004.

    Google Scholar 

  • Mycock D. J.; Watt M. P.; Hannweg K. F.; Naicker K.; Makwarela M.; Berjak P. Micropropagation of two indigenous Haworthia spp. (H. limifolia and H. koelmaniorum). S Afr J Bot 63: 345–350; 1997.

    Google Scholar 

  • Mycock D. J.; Wesley-Smith J.; Berjak P. Cryopreservation of somatic embryos of four species with and without cryoprotectant pre-treatment. Ann Bot 75: 331–336; 1995.

    Article  Google Scholar 

  • Ngobese N.Z.; Sershen; Pammenter N.W.; Berjak P. Cryopreservation of the embryonic axes of Phoenix reclinata, a representative of the intermediate seed category. Seed Sci Tech 38: 705-717; 2010.

    Google Scholar 

  • Nigro S. A.; Makunga N. P.; Grace O. M. Medicinal plants at the ethnobotany–biotechnology interface. S Afr J Bot 70: 89–96; 2004.

    Google Scholar 

  • OBIS (Ocean Biogeographic Information System) (http://www.obis.org/OBISWEB/). Rutgers, NJ.

  • OECD (Organization for Economic Cooperation and Development). Biological resource centres: underpinning the future of life sciences and biotechnology. OECD, Paris; 2001.

    Google Scholar 

  • OECD (Organization for Economic Cooperation and Development). OECD best practice guidelines for biological resource centres. OECD, Paris; 2007.

    Google Scholar 

  • Okole B. N.; Odhav B. Commercialisation of plants in Africa. S Afr J Bot 70: 109–115; 2004.

    Google Scholar 

  • Padayachee K.; Watt M. P.; Edwards N.; Mycock D. J. Cryopreservation as a tool for the conservation of Eucalyptus genetic variability: concepts and challenges. Southern Forests 71: 165–170; 2009.

    Article  Google Scholar 

  • Pammenter N. W.; Berjak P. A review of recalcitrant seed physiology in relation to desiccation-tolerance mechanisms. Seed Sci Res 9: 13–38; 1999.

    Google Scholar 

  • Pammenter N. W.; Berjak P.; Goveia M.; Sershen; Kioko J. I.; Whitaker C.; Beckett R. P. Cryo-conservation of genetic diversity of recalcitrant-seeded species via zygotic embryonic axes: successes and problems. Acta Hort; 2010/2011 (in press).

  • Pammenter N. W.; Berjak P.; Wesley-Smith J.; Vander Willigen C. Experimental aspects of drying and recovery. In: Black M.; Pritchard H. W. (eds) Desiccation and survival in plants: drying without dying. CABI, Wallingford; 2002.

    Google Scholar 

  • Pammenter N. W.; Greggains V.; Kioko J. I.; Wesley-Smith J.; Berjak P.; Finch-Savage W. E. The time factor during dehydration of non-orthodox (recalcitrant) seeds: effects of different drying rates on viability retention in Ekebergia capensis. Seed Sci Res 8: 468–471; 1998.

    Article  Google Scholar 

  • Panis B. Cryopreservation of Musa germplasm, 2nd edn. Technical Guidelines No. 9 (edited by Engelmann F, Benson E). Bioversity International Montpellier, France; 2009.

  • Panis B.; Lambardi M. Status of cryopreservation technologies in plants (crops and forest trees). In: Ruane J.; Sonnino A. (eds) The role of biotechnology in exploring and protecting agricultural genetic resources. FAO, Rome, pp 61–78; 2006.

    Google Scholar 

  • Pence V. C. Desiccation and the survival of Aesculus, Castanea and Quercus embryo axes through cryopreservation. Cryobiology 29: 391–399; 1992.

    Article  Google Scholar 

  • Perán R.; Berjak P.; Pammenter N. W.; Kioko J. Cryopreservation, encapsulation and promotion of shoot production of embryonic axes of a recalcitrant species, Ekebergia capensis Sparrm. CryoLetts 27: 5–16; 2006.

    Google Scholar 

  • Pritchard H. W.; Tompsett P. B.; Manger K.; Smidt W. J. The effect of moisture content on the low temperature responses of Araucaria hunsteinii seed and embryos. Ann Bot 76: 79–88; 1995.

    Article  Google Scholar 

  • Quain M. D.; Berjak P.; Acheampong E.; Kioko J. I. Sucrose treatment and explant water content: critical factors to consider in development of successful cryopreservation protocols for shoot tip explants of the tropical species Dioscorea rotundata (yam). CryoLetts 30: 212–223; 2009.

    CAS  Google Scholar 

  • Red Data List Plants in South Africa www.sanbi.org/biodiversity/reddata. Cited 1 Jan 2010; 2009.

  • Reed B. M. (ed). Plant cryopreservation. A practical guide. Springer, New York; 2008.

    Google Scholar 

  • Reed B. M.; Engelmann F.; Dulloo M. E.; Engels J. M. M. Technical guidelines for the management of field and in vitro germplasm collections. IPGRI Handbooks for Genebanks No. 7. IPGRI, Rome, Italy; 2004.

  • Rutherford M. C.; Midgley G. F.; Bond W. J.; Powrie L. W.; Roberts R.; Allsopp J. Plant biodiversity. In: Kiker G. (ed) Climate change impacts in southern Africa. Report to the National Climate Change Committee. Department of Environmental Affairs and Tourism, Pretoria, South Africa; 2000.

    Google Scholar 

  • Sakai A.; Kobayashi S.; Oiyama I. Cryopreservation of nuclear cells of navel orange (Citrus sinensis Osb var. brasiliensis Tanaka) by vitrification. Plant Cell Rep 9: 30–35; 1990.

    Article  Google Scholar 

  • Scowcroft, W. R. Genetic variability in tissue culture: impact on germplasm conservation and utilisation. International Board for Plant Genetic Resources, Report (AGPG:IBPGR/84/152), Rome, Italy; 1984.

  • Southern Education & Research Alliance (SERA) e-news. http://www.seralliance.com/news/vol3no3/. Cited 3 Jan 2010; 2006.

  • Sershen; Pammenter N. W.; Berjak; Wesley-Smith J. Cryopreservation of embryonic axes of selected amaryllid species. CryoLetts 28: 387–399; 2007.

    CAS  Google Scholar 

  • Sershen; Berjak P.; Pammenter N. W. Desiccation sensitivity of excised embryonic axes of selected amaryllid species. Seed Sci Res 18: 1–11; 2008a.

    Article  Google Scholar 

  • Sershen; Pammenter N. W.; Berjak P. Post-harvest behaviour and short- to medium-term storage of recalcitrant seeds and encapsulated embryonic axes of selected amaryllid species. Seed Sci & Technol 36: 133–147; 2008b.

    Google Scholar 

  • Stern N. The economics of climate change: the Stern review. Her Majesty’s Stationery Office (HMSO), UK; 2006.

    Google Scholar 

  • Stewart P.; Taylor M.; Mycock D. Somatic embryogenesis in Warburgia salutaris. Proc Mic Soc South Afr 27: 84; 1997.

    Google Scholar 

  • Stewart P.; Taylor M.; Mycock D. The sequence of the preparative procedures affects the success of cryostorage of cassava somatic embryos. CryoLetts 22: 5–12; 2001.

    Google Scholar 

  • Skyba M.; Urbanová M.; Kapchina-Toteva V.; Košuth J.; Harding K.; Čellárová E. Physiological, biochemical and molecular characteristics of cryopreserved Hypericum perforatum L. shoots tips. CryoLetters 31: 249–260; 2010.

    PubMed  CAS  Google Scholar 

  • Thiart S. Where do our potatoes come from? http://www.arc.agric.za/home. Cited Jan 2 2010; 2006.

  • Thuiller W.; Midgley G. F.; Rouget M.; Cowling R. M. Predicting patterns of plant species richness in megadiverse South Africa. Ecogeog 29: 733–744; 2006.

    Article  Google Scholar 

  • Varghese D.; Berjak P.; Pammenter N. W. Cryopreservation of shoot tips of Trichilia emetica, a tropical recalcitrant-seeded species. CryoLetts 30: 280–290; 2009.

    CAS  Google Scholar 

  • Volk G. M.; Walters C. Plant vitrification solution 2 lowers water content and alters freezing behaviour in shoot tips during cryoprotection. Cryobiology 52: 48–61; 2006.

    Article  PubMed  CAS  Google Scholar 

  • von Ahlefeldt D.; Crouch N. R.; Nichols G.; Symmonds R.; McKean S.; Sibiya H.; Cele M. P. Medicinal plants traded on South Africa’s eastern seaboard. Porcupine Press, Johannesburg; 2003.

    Google Scholar 

  • von Fintel G. T.; Berjak P.; Pammenter N. W. Seed behaviour in Phoenix reclinata Jaquin, the wild date palm. Seed Sci Res 14: 197–204; 2004.

    Article  Google Scholar 

  • Walters C.; Pammenter N. W.; Berjak P.; Crane J. Desiccation damage, accelerated ageing and respiration in desiccation tolerant and sensitive seeds. Seed Sci Res 11: 135–148; 2001.

    Google Scholar 

  • Watt M. P.; Banasiak M.; Reddy D.; Albertse E. H.; Snyman S. In vitro minimal growth storage of Saccharum spp. hybrid (genotype 88H0019) at two stages of direct somatic embryogenic regeneration. Plant Cell Organ Cult 96: 263–271; 2009.

    Article  Google Scholar 

  • Watt M. P.; Thokoane N. L.; Mycock D. J.; Blakeway F. In vitro storage of Eucalyptus germplasm under minimal growth conditions. Plant Cell, Tissue & Organ Culture 61: 161–164; 2000.

    Article  Google Scholar 

  • Wesley-Smith J.; Vertucci C. W.; Berjak P.; Pammenter N. W.; Crane J. Cryopreservation of recalcitrant axes of Camellia sinensis in relation to dehydration, freezing rate and the thermal properties of tissue water. J Plant Physiol 140: 596–604; 1992.

    Google Scholar 

  • Wesley-Smith J.; Pammenter N. W.; Berjak P.; Walters C. The effects of two drying rates on desiccation tolerance of embryonic axes of recalcitrant jackfruit (Artocarpus heterophyllus Lamk.) seeds. Ann Bot 88: 653–664; 2001b.

    Article  Google Scholar 

  • Wesley-Smith J.; Walters C.; Berjak P.; Pammenter N. Non-equilibrium cooling of Poncirus trifoliata (L.) embryonic axes at various water contents. CryoLetts 25: 21–128; 2004a.

    Google Scholar 

  • Wesley-Smith J.; Walters C.; Berjak P.; Pammenter N. W. The influence of water content, cooling and warming rate upon survival of embryonic axes of Poncirus trifoliata (L.). CryoLetts 25: 129–138; 2004b.

    Google Scholar 

  • Wesley-Smith J.; Walters C.; Pammenter N. W.; Berjak P. Interactions among water contents, rapid (non-equilibrium) cooling to −196°C and survival of embryonic axes of Aesculus hippocastanum L. seeds. Cryobiol 42: 196–206; 2001a.

    Article  CAS  Google Scholar 

  • Whitaker C.; Beckett Minibayeva F. V.; Kranner I. Production of reactive oxygen species in excised, desiccated and cryopreserved explants of Trichilia dregeana Sond. S Afr J Botany 76: 112–118; 2010.

    Article  CAS  Google Scholar 

  • Willis C. K.; van Wyk E. Integrating ex situ and in situ conservation. SANBI Biodiversity Series 1: 35–39; 2006.

    Google Scholar 

Download references

Acknowledgements

Financial support for the studies of the authors described in this paper was provided by the National Research Foundation of South Africa and research grants from UKZN and WITS. The MSB/DI support significantly expedited progress and provided the initial impetus for the networking that is presently being taken further. Dr. Erica Benson and Dr. Keith Harding gratefully acknowledge their respective institutional affiliations as Honorary Research Fellows at the University of KwaZulu-Natal, Durban, the University of the Witwatersrand, Johannesburg, and Research Associates at Wildlife Biological Resources Centre, Pretoria, South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Berjak.

Additional information

Editor: P. Lakshmanan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berjak, P., Bartels, P., Benson, E.E. et al. Cryoconservation of South African plant genetic diversity. In Vitro Cell.Dev.Biol.-Plant 47, 65–81 (2011). https://doi.org/10.1007/s11627-010-9317-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-010-9317-4

Keywords

Navigation