Skip to main content
Log in

Establishment, characterization, and differentiation of a karyotypically normal human embryonic stem cell line from a trisomy-affected embryo

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Derivation of human embryonic stem cell (hESC) lines from chromosomally or genetically abnormal embryos obtained following preimplantation genetic diagnosis (PGD) is of immense interest to study various kinds of genetic disorders. In this study, we have established a new hESC line Relicell®hES4, isolated from an aneuploid embryo. Derivation of this cell line was achieved by isolation of the inner cell mass (ICM) by mechanical method. Karyotype analysis showed that the hESC line is euploid having 46 chromosomes, contrary to our expectations. The undifferentiated cells exhibited long-term proliferation capacity and expressed markers typical for hESC, such as OCT4, NANOG, and SSEA4. A comparative microarray study was carried out to analyze the transcription profile of Relicell®hES4 along with three other normal hESC line generated earlier in our lab. Relicell®hES4 manifested pluripotent differentiation potential both in vivo and in vitro. The cells were also induced to form neurons, cardiomyocytes, and pancreatic β islets. The generation of a normal hESC line from an abnormal embryo points to the fact that even such embryos can be considered for deriving new hESC lines instead of discarding them. The data represented here are the first detailed report on characterization and differentiation of an Indian hESC line generated from a PGD analyzed embryo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Abeyta M. J.; Clark A. T.; Rodriguez R. T.; Bodnar M. S.; Pera R. A.; Firpo M. T. Unique gene expression signatures of independently-derived human embryonic stem cell lines. Hum. Mol. Genet. 13(6): 601–608; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Amit M.; Carpenter M. K.; Inokuma M. S.; Chiu C. P.; Harris C. P.; Waknitz M. A.; Itskovitz-Eldor J.; Thomson J. A. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev. Biol. 227(2): 271–278; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Baart E. B.; Martini E.; van den Berg I.; Macklon N. S.; Galjaard R. J.; Fauser B. C.; Van Opstal D. Preimplantation genetic screening reveals a high incidence of aneuploidy and mosaicism in embryos from young women undergoing IVF. Hum. Reprod. 21(1): 223–233; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Biancotti J. C.; Narwani K.; Buehler N.; Mandefro B.; Golan-Lev T.; Yanuka O.; Clark A.; Hill D.; Benvenisty N.; Lavon N. Human embryonic stem cells as models for aneuploid chromosomal syndromes. Stem Cells 28(9): 1530–1540; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Choo A. B.; Churchill G. A.; Corbel M.; Damjanov I.; Draper J. S.; Dvorak P.; Emanuelsson K.; Fleck R. A.; Ford A.; et al. Characterization of human embryonic stem cell lines by the international stem cell initiative. Nat. Biotech. 25: 803–816; 2007.

    Article  Google Scholar 

  • Colman A.; Dreesen O. Pluripotent stem cells and disease modeling. Cell Stem Cell 5(3): 244–247; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Dvash T.; Benvenisty N. Human embryonic stem cells as a model for early human development. Best Pract Res Clin Obstet Gynaecol. 18(6): 929–940; 2004.

    Article  PubMed  Google Scholar 

  • Eiges R.; Urbach A.; Malcov M.; Frumkin T.; Schwartz T.; Amit A.; Yaron Y.; Eden A.; Yanuka O.; Benvenisty N.; Ben-Yosef D. Developmental study of Fragile X syndrome using human embryonic stem cells derived from preimplantation genetically diagnosed embryos. Cell Stem Cell 1(5): 568–577; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Gardner D. K.; Lane M.; Stevens J.; Schlenker T.; Schoolcraft W. B. Blastocyst score affects implantation and pregnancy outcome: towards a single blastocyst transfer. Fertil. Sterl. 73: 1155–1158; 2000.

    Article  CAS  Google Scholar 

  • Gavrilov S.; Prosser R. W.; Khalid I.; MacDonald J.; Sauer M. V.; Landry D. W.; Papaioannou V. E. Non-viable human embryos as a source of viable cells for embryonic stem cell derivation. Reprod. Biomed. Online 18(2): 301–308; 2009.

    Article  PubMed  Google Scholar 

  • Harper J. C.; Pergament E.; Delhanty J. D. Genetics of gametes and embryos. Eur. J. Obstet. Gynecol. Reprod. Biol. 115(suppl 1): S80–S84; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Iacovitti L.; Donaldson A. E.; Marshall C. E.; Suon S.; Yang M. A protocol for the differentiation of human embryonic stem cells into dopaminergic neurons using only chemically defined human additives: studies in vitro and in vivo. Brain Res. 1127(1): 19–25; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Jiang J.; Au M.; Lu K.; Eshpeter A.; Korbutt G.; Fisk G.; Majumdar A. S. Generation of insulin-producing islet-like clusters from human embryonic stem cells. Stem Cells 25(8): 1940–1953; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Klimanskaya I.; Chung Y.; Becker S.; Lu S. J.; Lanza R. Derivation of human embryonic stem cells from single blastomeres. Nat. Protoc. 2(8): 1963–1972; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Krey L. C.; Grifo J. A. Poor embryo quality: the answer lies (mostly) in the egg. Fertil. Steril. 75: 466–468; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Lavon N.; Narwani K.; Golan-Lev T.; Buehler N.; Hill D.; Benvenisty N. Derivation of euploid human embryonic stem cells from aneuploid embryos. Stem Cells 26(7): 1874–1882; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Liu Y.; Shin S.; Zeng X.; Zhan M.; Gonzalez R.; Mueller F.; Schwartz C. M.; Xue H.; Li H.; Baker S. C.; Chudin E.; Barker D.; McDaniel T. K.; Oeser S.; Loring J. F.; Mattson M. P.; Rao M. S. Genome wide profiling of human embryonic stem cells (hESCs), their derivatives and embryonal carcinoma cells to develop base profiles of U.S. Federal government approved hESC lines. BMC Dev. Biol. 6: 20; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Mai Q.; Yu Y.; Li T.; Wang L.; Chen M.; Huang S.; Zhou C.; Zhou Q. Derivation of human embryonic stem cell lines from parthenogenetic blastocysts. Cell Res. 17(12): 1008–1019; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Mandal A.; Bhowmik S.; Patki A.; Viswanathan C.; Majumdar A. S. Derivation, characterization, and gene expression profile of two new human ES cell lines from India. Stem Cell. Res. 5(3): 173–187; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Mandal A.; Tipnis S.; Pal R.; Ravindran G.; Bose B.; Patki A.; Rao M. R. Characterization and in vitro differentiation potential of a new human embryonic stem cell line, ReliCell®hES1. Differentiation 74(2–3): 81–90; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Mateizel I.; De Temmerman N.; Ullmann U.; Cauffman G.; Sermon K.; Van de Velde H.; De Rycke M.; Degreef E.; Devroey P.; Liebaers I.; Van Steirteghem A. Derivation of human embryonic stem cell lines from embryos obtained after IVF and after PGD for monogenic disorders. Hum. Reprod. 21(2): 503–511; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Mitalipova M.; Calhoun J.; Shin S.; Wininger D.; Schulz T.; Noggle S.; Venable A.; Lyons I.; Robins A.; Stice S. Human embryonic stem cell lines derived from discarded embryos. Stem Cells 21(5): 521–526; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Munne S.; Cohen J. Chromosome abnormalities in human embryos. Hum. Reprod. Update 4(6): 842–855; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Munné S.; Velilla E.; Colls P.; Bermudez M.; Vemuri M.; Steuerwald N.; Garrisi J.; Cohen J. Self-correction of chromosomally abnormal embryos in culture and implications for stem cell production. Fertil. Steril. 84: 1328–1334; 2005.

    Article  PubMed  Google Scholar 

  • Narwani K.; Biancotti J. C.; Golan-Lev T.; Buehler N.; Hill D.; Shifman S.; Benvenisty N.; Lavon N. Human embryonic stem cells from aneuploid blastocysts identified by pre-implantation genetic screening. In Vitro Cell. Dev. Biol. Anim. 46(3–4): 309–316; 2010. 2010 Epub 2010 Mar 12.

    Article  PubMed  Google Scholar 

  • Peura T.; Bosman A.; Chami O.; Jansen R. P.; Texlova K.; Stojanov T. Karyotypically normal and abnormal human embryonic stem cell lines derived from PGD-analyzed embryos. Clon. Stem Cell. 10(2): 203–216; 2008.

    Article  CAS  Google Scholar 

  • Pickering S. J.; Minger S. L.; Patel M.; Taylor H.; Black C.; Burns C. J.; Ekonomou A.; Braude P. R. Generation of a human embryonic stem cell line encoding the cystic fibrosis mutation ΔF508, using preimplantation genetic diagnosis. Reprod. Biomed. Online 10(3): 390–397; 2005.

    Article  PubMed  Google Scholar 

  • Skottman H.; Mikkola M.; Lundin K.; Olsson C.; Strömber A. M.; Tuuri T.; Otonkoski T.; Hovatta O.; Lahesmaa R. Gene expression signatures of seven individual human embryonic stem cell lines. Stem Cells 23: 1343–1356; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Thomson J. A.; Itskovitz-Eldor J.; Shapiro S. S.; Waknitz M. A.; Swiergiel J. J.; Marshall V. S.; Jones J. M. Embryonic stem cell lines derived from human blastocysts. Science 282: 1145–1147; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Verlinsky Y.; Strelchenko N.; Kukharenko V.; Rechitsky S.; Verlinsky O.; Galat V.; Kuliev A. Human embryonic stem cell lines with genetic disorders. Reprod. Biomed. Online 10(1): 105–110; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Wilton L. Preimplantation genetic diagnosis for aneuploidy screening in early human embryos: a review. Prenat. Diagn. 22: 512–518; 2002.

    Article  PubMed  Google Scholar 

  • Zeng X.; Miura T.; Luo Y.; Bhattacharya B.; Condie B.; Chen J.; Ginis I.; Lyons I.; Mejido J.; Puri R. K.; Rao M. S.; Freed W. J. Properties of pluripotent human embryonic stem cells BG01 and BG02. Stem Cells 22: 293–312; 2004.

    Google Scholar 

  • Zhang J.; Wilson G. F.; Soerens A. G.; Koonce C. H.; Yu J.; Palecek S. P.; Thomson J. A.; Kamp T. J. Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ. Res. 104: e30–e41; 2009.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Reliance Life Sciences Pvt Ltd (www.rellife.com), for providing the infrastructure, administrative and financial support to work on this project. The authors thank Dr. Harinarayan Rao for his help in conducting the teratoma experiments and the team members of Molecular Medicine group for the karyotype analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arundhati Mandal.

Additional information

Editor: T. Okamoto

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

Antibodies details used for immunofluorescence staining (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mandal, A., Mathew, S., Saha, D. et al. Establishment, characterization, and differentiation of a karyotypically normal human embryonic stem cell line from a trisomy-affected embryo. In Vitro Cell.Dev.Biol.-Animal 49, 15–26 (2013). https://doi.org/10.1007/s11626-012-9567-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-012-9567-z

Keywords

Navigation