Date: 08 Feb 2013

Close correlation between development of MODS during the initial 72 h of hospitalization and hospital mortality in severe fever with thrombocytopenia syndrome

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


An emerging infectious disease was identified as severe fever with thrombocytopenia syndrome (SFTS) in central China since late March 2009. We found the patients with SFTS had severe clinical symptoms, and progressed rapidly to multiple organ dysfunction syndrome (MODS) with high fatality rate of 25%–30%. The aim of this study was to assess the significance of risk factors predicting the development of MODS and death in SFTS patients. Consecutive SFTS admissions between May 2009 and September 2011 were analyzed for parameters of organ function during hospitalization using Marshall scoring system for MODS, and platelet counts were recorded on admission and at 24, 48, 72 h and one week after admission. We investigated the kinetics of organ failures and analyzed the association between age, platelet count and development of MODS or death. A total of 92 SFTS patients were enrolled in this study. Among them, 32 patients with dysfunction of over 4 organs were identified, 45% of them died within 72 h, 72% died within 5 days, and 76% died within 7 days after admission. We also found cumulative Marshall score was significantly higher in death patients (11.76±2.05) than in survival patients (4.22±1.98) (P<0.001). In addition, SFTS patients had older age and lower platelet counts in MODS and death groups. Furthermore, we also observed that there was a close correlation between platelet count on admission and Marshall score (P<0.001). High Marshall score, advanced age and lower platelet counts were the main risk factors for the development of MODS, and those factors could predict mortality in SFTS patients, suggesting prompt treatment and close monitoring of severe complications, especially MODS, are of great importance in saving patients’ lives.