Skip to main content
Log in

How to determine basis stability in interval linear programming

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

Interval linear programming (ILP) was introduced in order to deal with linear programming problems with uncertainties that are modelled by ranges of admissible values. Basic tasks in ILP such as calculating the optimal value bounds or set of all possible solutions may be computationally very expensive. However, if some basis stability criterion holds true then the problems becomes much more easy to solve. In this paper, we propose a method for testing basis stability. Even though the method is exponential in the worst case (not surprisingly due to NP-hardness of the problem), it is fast in many cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alefeld, G., Herzberger, J.: Introduction to interval computations. Academic Press, London (1983)

    MATH  Google Scholar 

  2. Beeck, H.: Linear programming with inexact data. Technical report TUM-ISU-7830, Technical University of Munich, Munich (1978)

  3. Gabrel, V., Murat, C., Remli, N.: Linear programming with interval right hand sides. Int. Trans. Oper. Res. 17(3), 397–408 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. Hladík, M.: Optimal value range in interval linear programming. Fuzzy Optim. Decis. Mak. 8(3), 283–294 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Hladík, M.: Complexity of necessary efficiency in interval linear programming and multiobjective linear programming. Optim. Lett. 6(5), 893–899 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Jansson, C.: A self-validating method for solving linear programming problems with interval input data. In: Kulisch, U., Stetter, H.J. (eds.) Scientific computation with automatic result verification, Computing Suppl. 6, pp. 33–45. Springer, Wien (1988)

  7. Jansson, C., Rump, S.M.: Rigorous solution of linear programming problems with uncertain data. Z. Oper. Res. 35(2), 87–111 (1991)

    Google Scholar 

  8. Koníčková, J.: Sufficient condition of basis stability of an interval linear programming problem. ZAMM. Z. Angew. Math. Mech. 81(3), 677–678 (2001)

    MATH  Google Scholar 

  9. Krawczyk, R.: Fehlerabschätzung bei linearer optimierung. In: Interval Mathematics, LNCS 29, pp. 215–222. Springer, Berlin (1975)

  10. Kuchta, D.: A modification of a solution concept of the linear programming problem with interval coefficients in the constraints. CEJOR Cent. Eur. J. Oper. Res. 16(3), 307–316 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lai, K.K., Wang, S.Y., Xu, J.P., Zhu, S.S., Fang, Y.: A class of linear interval programming problems and its application to portfolio selection. IEEE Trans. Fuzzy Syst. 10(6), 698–704 (2002)

    Article  Google Scholar 

  12. Li, Y.P., Huang, G.H., Guo, P., Yang, Z.F., Nie, S.L.: A dual-interval vertex analysis method and its application to environmental decision making under uncertainty. Eur. J. Oper. Res. 200(2), 536–550 (2010)

    Article  MATH  Google Scholar 

  13. Machost, B.: Numerische Behandlung des Simplexverfahrens mit intervallanalytischen Methoden. Tech. Rep. 30, Berichte der Gesellschaft für Mathematik und Datenverarbeitung, 54 pages, Bonn (1970)

  14. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to interval analysis. SIAM, Philadelphia (2009)

    Book  MATH  Google Scholar 

  15. Mráz, F.: On infimum of optimal objective function values in interval linear programming. Technical report KAM Series, pp. 96–337, Department of Applied Mathematics, Charles University, Prague (1996)

  16. Mráz, F.: Calculating the exact bounds of optimal values in LP with interval coefficients. Ann. Oper. Res. 81, 51–62 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Neumaier, A.: Interval methods for systems of equations. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  18. Ning, S., Kearfott, R.B.: A comparison of some methods for solving linear interval equations. SIAM J. Numer. Anal. 34(4), 1289–1305 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  19. Noghabi, A.S., Mashhadi, H.R., Sadeh, J.: Optimal coordination of directional overcurrent relays considering different network topologies using interval linear programming. IEEE Trans. Power Deliv. 25(3), 1348–1354 (2010)

    Article  Google Scholar 

  20. Oettli, W., Prager, W.: Compatibility of approximate solution of linear equations with given error bounds for coefficients and right-hand sides. Numer. Math. 6, 405–409 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  21. Poljak, S., Rohn, J.: Checking robust nonsingularity is NP-hard. Math. Control Signals Syst. 6(1), 1–9 (1993)

    Google Scholar 

  22. Rex, G., Rohn, J.: Sufficient conditions for regularity and singularity of interval matrices. SIAM J. Matrix Anal. Appl. 20(2), 437–445 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  23. Rohn, J.: (1989) Systems of linear interval equations. Linear Algebra Appl. 126(C):39–78

    Google Scholar 

  24. Rohn, J.: Cheap and tight bounds: The recent result by E. Hansen can be made more efficient. Interval Comput. 1993(4), 13–21 (1993)

    MATH  MathSciNet  Google Scholar 

  25. Rohn, J.: Stability of the optimal basis of a linear program under uncertainty. Oper. Res. Lett. 13(1), 9–12 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  26. Rohn, J.: A handbook of results on interval linear problems (2005) http://www.cs.cas.cz/rohn/handbook

  27. Rohn, J.: Interval linear programming. In: Fiedler, M et al. (eds.) Linear optimization problems with inexact data, chap. 3, pp. 79–100. Springer, New York (2006)

  28. Rohn, J.: Solvability of systems of interval linear equations and inequalities. In: Fiedler, M. et al. (eds.) Linear optimization problems with inexact data, chap. 2, pp. 35–77. Springer, New York (2006)

  29. Rohn, J.: Forty necessary and sufficient conditions for regularity of interval matrices: A survey. Electron. J. Linear Algebra 18, 500–512 (2009)

    MATH  MathSciNet  Google Scholar 

  30. Rohn, J.: An improvement of the Bauer-Skeel bounds. Technical Report V-1065, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague (2010). http://uivtx.cs.cas.cz/rohn/publist/bauerskeel.pdf

  31. Rohn, J., Kreinovich, V.: Computing exact componentwise bounds on solutions of linear systems with interval data is NP-hard. SIAM J. Matrix Anal. Appl. 16(2), 415–420 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  32. Rohn, J., Kreslová, J.: Linear interval inequalities. Linear Multilinear Algebra 38(1–2), 79–82 (1994)

    Article  MATH  Google Scholar 

  33. Rump, S.M.: INTLAB - INTerval LABoratory. In: Csendes, T. (ed.) Developments in reliable computing, pp. 77–104. Kluwer Academic Publishers, Dordrecht (1999). http://www.ti3.tu-harburg.de/rump/

  34. Sengupta, A., Pal, T.K.: Fuzzy Preference Ordering of Interval Numbers in Decision Problems, Studies in Fuzziness and Soft Computing, vol. 238. Springer, Berlin (2009)

    Book  Google Scholar 

  35. Sun, Y., Li, Y., Huang, G.: Development of a fuzzy-queue-based interval linear programming model for municipal solid waste management. Environ. Eng. Sci. 27(6), 451–468 (2010)

    Article  Google Scholar 

  36. Zhou, F., Guo, H.C., Chen, G.X., Huang, G.H.: The interval linear programming: a revisit. J. Environ. Inform. 11(1), 1–10 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

The author was partially supported by the Czech Science Foundation Grant P403/12/1947.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Hladík.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hladík, M. How to determine basis stability in interval linear programming. Optim Lett 8, 375–389 (2014). https://doi.org/10.1007/s11590-012-0589-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-012-0589-y

Keywords

Navigation