Skip to main content

Advertisement

Log in

Electron energy-loss spectroscopy in the low-loss region as a characterization tool of electrode materials

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Energy losses below 100 eV are by far less exploited than higher losses in electron energy-loss spectroscopy. Two new examples are given to illustrate the characterization possibilities offered by spectra in this energy range. Typical materials that could be used as electrodes in electrochemical cells were chosen as application cases. Through the use of calculations based on density functional theory, we first demonstrate that the first peak present at the lithium K edge in Li x TiP4 can give access to the precise localisation of inserted Li atoms in the f.c.c. structure. In particular, different tetrahedral sites could be differentiated according to their distance to the Ti site. Secondly, calculations of valence electron energy-loss spectra of perovskite materials indicate that a characteristic peak for regular perovskite (Pm \(\overline 3 \)m space group) exists in the 10–15 eV range. The high sensitivity of this peak to the distortion of the octahedron arrangements is also demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Egerton RF (1996) Electron energy-loss spectroscopy in the electron microscope. Plenum, New York

    Google Scholar 

  2. Ahn CC (2004) Transmission Electron Energy Loss Spectrometry in Materials Science and the EELS atlas. Wiley-VCH

  3. Daniels HR, Brydson R, Brown A, Rand B (2003) Ultramicroscopy proceedings of the international workshop on strategies and advances in atomic level spectroscopy and analysis 96:547–558

    CAS  Google Scholar 

  4. Grigis C, Schamm S (1998) Ultramicroscopy 74:159–167

    Article  CAS  Google Scholar 

  5. Knupfer M, Fink J (2004) Synthetic Metals 141:21–27

    Article  CAS  Google Scholar 

  6. Marini A, Del Sole R, Rubio A (2003) Phys Rev Lett 91:256402

    Article  Google Scholar 

  7. Tafto J, Krivanek OL (1982) Phys Rev Lett 48:560–563

    Article  CAS  Google Scholar 

  8. Pearson DHAhn CC, Fultz B (1993) Phys Rev B 47:8471–8478

    Article  Google Scholar 

  9. Gloter A, Serin V, Turquat C, Cesari C, Leroux C, Nihoul G (2001) Eur Phys J B 22:179

    Article  CAS  Google Scholar 

  10. Lie K, Hoier R, Brydson R (2000) Phys Rev B 61:1786–1794

    Article  CAS  Google Scholar 

  11. Graetz J, Hightower A, Ahn CC, Yazami R, Rez P, Fultz B (2002) J Phys Chem B 106:1286–1289

    Article  CAS  Google Scholar 

  12. Shiraishi Y, Nakai I, Kimoto K, Matsui Y (2001) J Power Sources 97-98:461–464

    Article  CAS  Google Scholar 

  13. Backhaus-Ricoult M (2006) Solid State Ionics Solid State Ionics 15: Proceedings of the 15th International Conference on Solid State Ionics, Part I 177:2195–2200

    CAS  Google Scholar 

  14. Rez P, Bruley J, Brohan P, Payne M, Garvie LAJ (1995) Ultramicroscopy 59:159–167

    Article  CAS  Google Scholar 

  15. Hébert C, Luitz J, Schattschneider P (2003) Micron 34:219–225

    Article  Google Scholar 

  16. Blaha P, Schwarz K, Madsen GKH, Kvaniscka D, Luitz J (2001) WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties. Schwarz K., Techn. Universität Wien, Austria

    Google Scholar 

  17. Hohenberg P, Kohn W (1964) Phys Rev 136:B864–B871

    Article  Google Scholar 

  18. Kohn W, Sham LJ (1965) Phys Rev 140:A1133–A1138

    Article  Google Scholar 

  19. Keast VJ (2005) J Electron Spectrosc Relat Phenom 143:97

    Article  CAS  Google Scholar 

  20. Launay M, Boucher F, Moreau P (2004) Phys Rev B 69:035101–035109

    Article  Google Scholar 

  21. Mauchamp V, Boucher F, Ouvrard G, Moreau P (2006) Phys Rev B 74:115106–115110

    Article  Google Scholar 

  22. Singh DJ (1994) Planewaves, pseudopotentials and the LAPW method. Kluwer Academic

  23. Cottenier S (2002) Density Functional Theory and the Family of (L)APW-Methods: A Step-by-Step Introduction-Instituut voor kern-en Stralingsfysica, K. U. Leuven, Belgium, 2002, to be found at http://www.wien2k.at/reguser/textbooks

  24. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  25. Blöchl PE, Jepsen O, Andersen OK (1994) Phys Rev B 49:16223–16233

    Article  Google Scholar 

  26. Ambrosch-Draxl C, Majewski JA, Vogl P, Leising G (1995) Phys Rev B 51:9668–9676

    Article  CAS  Google Scholar 

  27. Ambrosch-Draxl C, Sofo J (2006) Comp Phys Comm 175:1

    Article  CAS  Google Scholar 

  28. Doublet M-L, Lemoigno F, Gillot F, Monconduit L (2002) Chem Mater 14:4126–4133

    Article  CAS  Google Scholar 

  29. Bichat M-P, Gillot F, Monconduit L, Favier F, Morcrette M, Lemoigno F, Doublet M-L (2004) Chem Mater 16:1002–1013

    Article  CAS  Google Scholar 

  30. NIST/FIZ, Inorganic Crystal Structure Database (2007) Version 1.4.2

  31. Mauchamp V, Moreau P, Monconduit L, Doublet M-L, Boucher F, Ouvrard G (2007) J Phys Chem. C 111:3996–4002

    Article  CAS  Google Scholar 

  32. Fallon P, Walsh CA, PEELS programme (1996) University of Cambridge, UK

  33. Mitterbauer C, Kothleitner G, Grogger W, Zandbergen H, Freitag B, Tiemeijer P, Hofer F (2003) Ultramicroscopy 96:469–480 Profceedings of the International Workshop on Strategies and Advances in Atomic Level Spectroscopy and Analysis

    Article  CAS  Google Scholar 

  34. Rafferty B, Brown LM (1998) Phys Rev B 58:10326

    Article  CAS  Google Scholar 

  35. Ferrari AC, Libassi A, Tanner BK, Stolojan V, Yuan J, Brown LM, Rodil SE, Kleinsorge B, Robertson J (2000) Phys Rev B 62:11089–11103

    Article  CAS  Google Scholar 

  36. Grey CP, Dupre N (2004) Chem Rev 104:4493–4512

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would also like to thank Dr. Laure Monconduit and Dr. M-L Doublet (Institut Charles Gerhardt, University of Montpellier, France) for providing the samples and for very fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Moreau.

Additional information

Paper presented at the 11th EuroConference on the Science and Technology of Ionics, Batz-sur-Mer, Sept. 9–15, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mauchamp, V., Boucher, F. & Moreau, P. Electron energy-loss spectroscopy in the low-loss region as a characterization tool of electrode materials. Ionics 14, 191–195 (2008). https://doi.org/10.1007/s11581-008-0208-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-008-0208-1

Keywords

Navigation