ANNALI DELL'UNIVERSITA' DI FERRARA

, Volume 52, Issue 1, pp 19–36

On stationary thermo-rheological viscous flows

Authors

  • Stanislav N. Antontsev
    • Departamento de Matemática, Universidade da Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal, Tel.: 00351-275 319 757, Fax: 00351-275 329 972
  • José F. Rodrigues
    • CMUC and Universidade de Lisboa/CMAF, Av. Prof. Gama Pinto 2, 1649-003 Lisboa
Article

DOI: 10.1007/s11565-006-0002-9

Cite this article as:
Antontsev, S.N. & Rodrigues, J.F. Ann. Univ. Ferrara (2006) 52: 19. doi:10.1007/s11565-006-0002-9

Abstract

We study the system of equations describing a stationary thermoconvective flow of a non-Newtonian fluid. We assume that the stress tensor S has the form

\(\displaystyle \mathbf{S}=-P\mathbf{I}+\left( \mu (\theta )+\tau (\theta ){|\mathbf{D(u)}|}^{p(\theta )-2}\right) {\mathbf{D(u)}}, \)

where u is the vector velocity, P is the pressure, θ is the temperature and μ ,p and τ are the given coefficients depending on the temperature. D and I are respectively the rate of strain tensor and the unit tensor. We prove the existence of a weak solution under general assumptions and the uniqueness under smallness conditions.

Keywords: Non-Newtonian fluids, Nonlinear thermal diffusion equations, Heat and mass transfer

Mathematics Subject Classification (2000): 76A05, 76D07, 76E30, 35G15

Download to read the full article text

Copyright information

© Springer-Verlag 2006