Skip to main content

Advertisement

Log in

Prospective evaluation in 123 patients of strain ratio as provided by quantitative elastosonography and multiparametric ultrasound evaluation (ultrasound score) for the characterisation of thyroid nodules

Valutazione prospettica in 123 pazienti dell’indice di deformabilità (strain ratio) ottenuto con elastosonografia quantitativa e dell’analisi ecografica multiparametrica (eco-score) nella caratterizzazione del nodulo tiroideo

  • Ultrasonography / Ecografia
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Purpose

This study was done to compare quantitative elastosonography and ultrasound analysis in the characterisation of thyroid nodules.

Materials and methods

From July 2009 to September 2011, 123 patients with 147 thyroid nodules were included in our study. All patients enrolled had to undergo thyroidectomy because of nodular thyroid disease (goitre or nodules). After preliminary examination with conventional ultrasound (US) and colour Doppler US, the patients were examined with elastosonography, using high-level equipment (Toshiba Aplio XG) and quantitative software (Elasto-Q). Each lesion was characterised using an US score (echogenicity, borders, microcalcifications and colour Doppler pattern), and then by elastosonographic strain ratio. Each patient subsequently underwent thyroidectomy. Histological results were used as the gold standard.

Results

Histological examination demonstrated 89 benign and 58 malignant lesions. On average, the strain ratio value was 2.84±2.69 (range, 0.05–14.5; p=0.001). Sensitivity and specificity of the US score were about 56% and 72%, respectively, whereas those of the strain ratio were 93% and 89%, using a cut-off of 2 obtained with receiver operating characteristic (ROC) curve analysis. Elastosonography was more accurate than US and colour Doppler US in characterising thyroid nodules (p=0.002).

Conclusions

Quantitative elastosonography is a useful diagnostic tool in the evaluation of thyroid lesions, and can be used to limit fine-needle aspiration cytology and improve the selection of patients for thyroidectomy.

Riassunto

Obiettivo

Scopo del presente lavoro è stato confrontare elastosonografia quantitativa ed analisi ecografica nella caratterizzazione del nodulo tiroideo.

Materiali e metodi

Tra luglio 2009 e settembre 2011 sono stati arruolati 123 pazienti con 147 noduli candidati all’intervento di tiroidectomia totale per la presenza di patologia nodulare tiroidea. Dopo valutazione preliminare con ecografia e color Doppler, i pazienti sono stati sottoposti ad elastosonografia, mediante software quantitativo Elasto-Q con apparecchiatura Toshiba Aplio XG. Ogni nodulo è stato caratterizzato mediante ecoscore (ecogenicità, margini, microcalcificazioni, pattern color Doppler) e indice di deformabilità (strain ratio). I risultati istologici sono stati utilizzati come gold standard.

Risultati

I noduli esaminati sono risultati benigni in 89 casi e maligni in 58. Alla valutazione elastosonografica la media dei valori di strain ratio è stata 2,84±2,69 (p=0,001). Si sono ottenuti valori di sensibilità e specificità rispettivamente 56% e 72% per l’eco-score e 93% e 89% per lo strain ratio, utilizzando un cut-off pari a 2, con un valore predittivo positivo del 55% e dell’82% rispettivamente. La tecnica elastosonografica ha mostrato maggiore accuratezza dell’ecografia e del color Doppler nella caratterizzazione delle lesioni tiroidee (p=0,002).

Conclusioni

L’elastosonografia quantitativa è uno strumento valido per la caratterizzazione dei noduli tiroidei, utile per ridurre il ricorso all’agoaspirato, in particolare nei casi incerti.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References/Bibliografia

  1. Cantisani V, Catania A, De Antoni E et al (2010) Is pattern III as evidenced by US color-Doppler useful in predicting thyroid nodule malignancy? Largescale retrospective analysis. Clin Ter 161:49–52

    Google Scholar 

  2. Brander A, Viikinkoski P, Nickels J, Kivisaari L (1991) Thyroid gland: US screening in a random adult population. Radiology 181:683–687

    PubMed  CAS  Google Scholar 

  3. Gharib H, Goellner JR (1993) Fine needle aspiration of the thyroid: an appraisal. Ann Intern Med 118:282–289

    Article  PubMed  CAS  Google Scholar 

  4. Reiners C, Wegscheider K, Schicha H et al (2004) Prevalence of thyroid disorders in the working population of Germany: ultrasonography screening in 96.278 unselected employees. Thyroid 14:926–932

    Article  PubMed  Google Scholar 

  5. Solbiati L, Osti V, Cova L, Tonolini M (2001) Ultrasound of thyroid, parathyroid glands and neck lymph nodes. Eur Radiol 11:2411–2424

    Article  PubMed  CAS  Google Scholar 

  6. Lyshchik A, Drozd V, Demidchik Y, Reiners C (2005) Diagnosis of thyroid cancer in children: value of Gray-scale and Power Doppler US. Radiology 235:604–613

    Article  PubMed  Google Scholar 

  7. De Fiori E, Rampinelli C, Turco F et al (2010) Role of operator experience in ultrasound-guided fine-needle aspiration biopsy of the thyroid. Radiol Med 115:612–618

    Article  PubMed  Google Scholar 

  8. Cibas ES, Ali SZ (2009) The Bethesda System For Reporting Thyroid Cytopathology. Am J Clin Pathol 132:658–665

    Article  PubMed  Google Scholar 

  9. Falvo L, D’Ercole C, Sorrenti S et al (2002) Papillary microcarcinoma of the thyroid gland: analysis of prognostic factors including histological subtype. Eur J Surg; Suppl 588:28–32

    Google Scholar 

  10. Krouskop TA, Dougherty DR, Vinson FS (1987) A pulsed Doppler ultrasonic system for making noninvasive measurements of the mechanical properties of soft tissue. J Rehabil Res Dev 24(2):1–8

    PubMed  CAS  Google Scholar 

  11. Ophir J, Cespedes I, Ponnekanti H et al (1991) Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrasonic Imaging 13:111–134

    PubMed  CAS  Google Scholar 

  12. Rubaltelli L, Corradin S, Dorigo A et al (2009) Differential diagnosis of benign and malignant thyroid nodules at elastosonography. Ultraschall Med 30:175–179

    Article  PubMed  CAS  Google Scholar 

  13. Cantisani V, D’Andrea V, Biancari F et al (2012) Prospective evaluation of multiparametric ultrasound and quantitative elastosonography in the differential diagnosis of benign and malignant thyroid nodules. Preliminary experience. Eur J Radiol 81:2678–2683

    Article  PubMed  Google Scholar 

  14. Ghassi D, Donato A (2009) Evaluation of the thyroid nodule. Postgrad Med J 85:190–195

    Article  PubMed  CAS  Google Scholar 

  15. Athanasiou A, Tardivon A, Tanter M et al (2010) Breast lesions: quantitative elastography with supersonic shear imaging. Preliminary results. Radiology 256:297–303

    Article  PubMed  Google Scholar 

  16. Miyagawa T, Tsutsumi M, Matsumura T et al (2009) Real-time elastography for the diagnosis of prostate cancer: evaluation of elastographic moving images. Jpn J Clin Oncol 39:394–398

    Article  PubMed  Google Scholar 

  17. Cho N, Moon WK, Kim HY et al (2010) Sonoelastographic strain index for differentiation of benign and malignant nonpalpable breast masses. J Ultrasound Med 29:1–7

    PubMed  Google Scholar 

  18. Thomas A, Degenhardt F, Farrokh A et al (2010) Significant differentiation of focal breast lesions calculation of strain ratio in breast sonoelastography. Acad Radiol 17:558–563

    Article  PubMed  Google Scholar 

  19. Regini E, Bagnera S, Tota D et al (2010) Role of sonoelastography in characterising breast nodules. Preliminary experience with 120 lesions. Radiol Med 115:551–562

    Article  PubMed  CAS  Google Scholar 

  20. Sipos JA (2009) Advances in ultrasound for the diagnosis and management of thyroid cancer. Thyroid 19:1363–1372

    Article  PubMed  Google Scholar 

  21. Rago T, Vitti P (2009) Potential value of elastosonography in the diagnosis of malignancy in thyroid nodules. Q J Nucl Med Mol Imaging 53:455–464

    PubMed  CAS  Google Scholar 

  22. Wang Y, Dan HJ, Dan HY et al (2010) Solid thyroid nodule using real-time ultrasound elastography. J Int Med Res 38:466–472

    Article  PubMed  CAS  Google Scholar 

  23. Rago T, Scutari M, Santini F et al (2010) Real-time elastosonography: useful tool for refining the presurgical diagnosis in thyroid nodules with indeterminate or nondiagnostic cytology. J Clin Endocrinol Metab 95:5274–5280

    Article  PubMed  CAS  Google Scholar 

  24. Cakir B, Aydin C, Korukluoğlu B et al (2011) Diagnostic value of elastosonographically determined strain index in the differential diagnosis of benign and malignant thyroid nodules. Endocrine 39:89–98

    Article  PubMed  CAS  Google Scholar 

  25. Park SH, Kim SJ, Kim EK et al (2009) Interobserver agreement in assessing the sonographic and elastographic features of malignant thyroid nodules. AJR Am J Roentgenol 193:W416–W423

    Article  PubMed  Google Scholar 

  26. Merino S, Arrazola J, Cárdenas A et al (2011) Utility and interobserver agreement of ultrasound elastography in the detection of malignant thyroid nodules in clinical care. AJNR Am J Neuroradiol 32:2142–2148

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Ricci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cantisani, V., D’Andrea, V., Mancuso, E. et al. Prospective evaluation in 123 patients of strain ratio as provided by quantitative elastosonography and multiparametric ultrasound evaluation (ultrasound score) for the characterisation of thyroid nodules. Radiol med 118, 1011–1021 (2013). https://doi.org/10.1007/s11547-013-0950-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-013-0950-y

Keywords

Parole chiave

Navigation