Skip to main content
Log in

Effect of Acid Aluminous Soil on Photosynthetic Parameters of Potato (Solanum tuberosum L.)

  • Published:
Potato Research Aims and scope Submit manuscript

Abstract

Potato is grown worldwide, in some cases in very acid soils. Aluminum (Al) is a major limiting factor for crop productivity in acid soils. Al toxicity was studied mainly on plant roots, while less attention was given to its effects on leaves. Al tolerance observed in solution cultures has rarely been correlated with Al tolerance in acid soils. Al tolerance was assessed in 12 potato cultivars grown in nutrient solutions containing 0, 25, and 50 μmol Al L−1 by its relative root elongation (RRE). The effect of acid soil with high level of exchangeable Al on leaf mineral content, chlorophyll content, net photosynthetic rate, transpiration rate, stomatal conductance, intercellular CO2 concentration, water use efficiency (WUE), and light use efficiency (LUE) was studied on cultivars, with the greatest differences in RRE (cv. Tresor, 63.1 and 42.5% and cv. Canberra, 23.3 and 19.2%, for the 25 and 50 μmol Al L−1 treatments, respectively), grown for 49 days after planting (DAP) in acid and limed soil. Growth in acid soil significantly reduced concentrations of nitrogen (−18.51%) and magnesium (−27.17%) in the leaves in cv. Canberra and concentrations of potassium and copper in both cultivars. Canberra grown in acid soil showed a significant decrease in chlorophyll content and photosynthetic rate, from 28 to 49 DAP, and in transpiration rate and LUE when averaged across all measurements, while cv. Tresor was not affected. Physiological disorders observed on leaves of plants grown in acid soil can be correlated with the differences in Al tolerance observed in nutrient solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

RRE:

Relative root elongation

DAP:

Days after planting

PAR:

Photosynthetically active radiation

WUE:

Water use efficiency

LUE:

Light use efficiency

Al:

Aluminum

N:

Nitrogen

P:

Phosphorus

K:

Potassium

Ca:

Calcium

Mg:

Magnesium

Fe:

Iron

Zn:

Zinc

Mn:

Manganese

Cu:

Copper

CaCO3 :

Calcium carbonate

References

  • AOAC (1995) Official method of analysis of AOAC International. 16th Edition, Vol. I. Arlington, USA

  • Bergmann W (1992) Nutritional disorders of plants: development, visual and analytical diagnosis. Gustav Fischer Verlag, Jena, Stuttgart

    Google Scholar 

  • Blamey FPC, Edmeades DC, Asher CJ, Edwards DG, Wheeler DM et al (1991) Evaluation of solution culture techniques for studying aluminum toxicity in plants. In: Wright RJ (ed) Plant-soil interactions at low pH. Kluwer Academic Pub, Dordrecht, the Netherlands, pp 905–912

    Chapter  Google Scholar 

  • Bogunovic M, Vidacek Z, Racz Z, Husnjak S, Sraka M (1996) Special purpose soil map of the Republic of Croatia, scale 1:300.000. Department of Soil Science, Faculty of Agriculture, University of Zagreb

  • Carver BF, Ownby JD (1995) Acid soil tolerance in wheat. Adv Agron 54:117–173

  • Chen L, Qi Y, Jiang H, Yang L, Yang G (2010) Photosynthesis and photoprotective systems of plants in response to aluminum toxicity. Afr J Biotechnol 9(54):9237–9247

    CAS  Google Scholar 

  • Delhaize E, Ryan PR (1995) Aluminium toxicity and tolerance in plants. Plant Physiol 107:315–321

    CAS  PubMed Central  PubMed  Google Scholar 

  • Egnér H, Riehm H, Domingo WR (1960) Untersuchungen über die chemische Bodenanalyse als Grundlage für die Beurteilung des Nährstoffzustandes der Böden. II. Chemische Extraktionsmethoden zur Phosphor- und Kaliumbestimmung. K Lantbr Hogsk Annlr 26:199–215

  • Fleisher DH, Wang Q, Timlin DJ, Chun J-A, Redy VR (2012) Response of potato gas exchange and productivity to phosphorus deficiency and carbon dioxide enrichment. Crop Sci 52:1803–1815

    Article  CAS  Google Scholar 

  • Foy CD (1988) Plant adaptation to acid, aluminum-toxic soils. Commun Soil Sci Plan 19:959–987

    Article  CAS  Google Scholar 

  • Foy CD, Fleming AL (1982) Aluminium tolerance of two wheat cultivars related to nitrate reductase activities. J Plant Nutr 5:1313–1333

    Article  CAS  Google Scholar 

  • Foy CD, Chaney RL, White MC (1978) Physiology of metal toxicity in plants. Ann Rev Plant Physio 29:511–566

    Article  CAS  Google Scholar 

  • Hermans C, Verbruggen N (2005) Physiological characterization of Mg deficiency in Arabidopsis thaliana. J Exp Bot 56:2153–2161

    Article  CAS  PubMed  Google Scholar 

  • Holford ICR (1997) Soil phosphorus: its measurement, and its uptake by plants. Aust J Soil Res 35:227–239

    Article  CAS  Google Scholar 

  • HRN ISO 10390 (2005) Soil quality—Determination of pH (ISO 10390:2005)

  • HRN ISO 11260 (2004) Soil quality—Determination of effective cation exchange capacity and base saturation level using barium chloride solution (ISO 11260:1994 + Cor 1:1996)

  • HRN ISO 11277 (2004) Soil quality—Determination of particle size distribution in mineral soil material. Method by sieving and sedimentation (ISO 1227:1998 + Cor 1:2002)

  • JDPZ (1966) Manual for the soil analysis. Volume I. Chemical methods for soil analysis. Belgrade

  • Kochian LV (1995) Cellular mechanisms of aluminum toxicity and resistance in plants. Annu Rev Plant Physiol Plant Mol Biol 46:237–260

    Article  CAS  Google Scholar 

  • Konarska A (2010) Effects of aluminum on growth and structure of red pepper (Capsicum annuum L.) leaves. Acta Physiol Plant 32:145–151

    Article  CAS  Google Scholar 

  • Lee CR (1971) Influence of aluminum on plant growth and mineral nutrition of potatoes. Agron J 63:604–608

    Article  CAS  Google Scholar 

  • Lindon FC, Barreiro MJ, Ramalho JC, Lauriano JA (1999) Effects of aluminum toxicity on nutrient accumulation in maize shoots: implications on photosynthesis. J Plant Nutr 22:397–416

    Article  Google Scholar 

  • Mihailovic N, Drazic G, Vucinic Z (2008) Effects of aluminium on photosynthetic performance in Al-sensitive and Al-tolerant maize inbred lines. Photosynthetica 46:476–480

    Article  CAS  Google Scholar 

  • Milivojevic DB, Stojanovic DD, Drinic SD (2000) Effects of aluminium on pigments and pigment-protein complexes of soybean. Biol Plantarum 43:595–597

    Article  CAS  Google Scholar 

  • Moustakas M, Ouzounidou G, Lannoye R (1995) Aluminum effects on photosynthesis and elemental uptake in an aluminum-tolerant and non-tolerant wheat cultivars. J Plant Nutr 18:669–683

    Article  CAS  Google Scholar 

  • Ohki K (1986) Photosynthesis, chlorophyll and transpiration responses in aluminium stressed wheat and sorghum. Crop Sci 26:572–575

    Article  CAS  Google Scholar 

  • Pécsváradi A, Nagy Z, Varga A, Vashegyi Á, Labádi I, Galbács G, Zsoldos F (2009) Chloroplastic glutamine synthetase is activated by direct binding of aluminium. Physiol Plantarum 135:43–50

    Article  Google Scholar 

  • Peixoto PH, Da Matta FM, Cambraia J (2002) Responses of the photosynthetic apparatus to aluminum stress in two sorghum cultivars. J Plant Nutr 25:821–832

    Article  CAS  Google Scholar 

  • Rengel Z (1990) Competitive Al3+ inhibition of net Mg2+ uptake by intact Lolium multiflorum roots. II Plant age effects. Plant Physiol 93:1261–1267

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rengel Z, Jurkic V (1993) Evaluation of Triticum aestivum germplasm from Croatia and Yugoslavia for aluminium tolerance. Euphytica 66:111–116

    Article  Google Scholar 

  • Rufty TW, Mackown CT, Lazof DB, Carter TE (1995) Effects of aluminium on nitrate uptake and assimilation. Plant Cell Environ 18:1325–1331

    Article  CAS  Google Scholar 

  • Samac DA, Tesfaye M (2003) Plant improvement for tolerance to aluminum in acid soils—a review. Plant Cell Tiss Org 75:189–207

    Article  CAS  Google Scholar 

  • Silva S, Pinto-Carnide O, Martins-Lopes P, Matos M, Guedes-Pinto H, Santos C (2010) Differential aluminium changes on nutrient accumulation and root differentiation in an Al sensitive vs. tolerant wheat. Environ Exp Bot 68:91–98

    Article  CAS  Google Scholar 

  • Simon L, Smalley TJ, Jones JB Jr, Lasseigne FT (1994) Aluminum toxicity in tomato. Part 2. Leaf gas exchange, chlorophyll content, and invertase activity. J Plant Nutr 17:307–317

    Article  CAS  Google Scholar 

  • Sivaguru M, Paliwal K (1993) Differential aluminium tolerance in some tropical rice cultivars. I Growth performance. J Plant Nutr 16:1705–1716

  • Tabaldi LA, Nicoloso FT, Castro GY, Cargnelutti D, Gonçalves JF, Rauber R, Skrebsky EC, Schetinger MRC, Morsch VM, Bisognin DA (2007) Physiological and oxidative stress responses of four potato clones to aluminum in nutrient solution. Braz J Plant Physiol 19(3):211–222

    Article  CAS  Google Scholar 

  • Taiz L, Zeiger E (2002) Plant physiology 3rd edn. Sinauer Associates, Sunderland, USA

    Google Scholar 

  • von Uexküll HR, Mutert E (1995) Global extent, development and economic impact of acid soils. Plant Soil 171(1):1–15

  • Vos J, Bom M (1993) Hand-held chlorophyll meter: a promising tool to assess the nitrogen status of potato foliage. Potato Res 36:301–308

    Article  CAS  Google Scholar 

  • Watanabe T, Osaki M (2002) Mechanisms of adaptation to high aluminum condition in native plant species growing in acid soils: a review. Commun Soil Sci Plant Anal 33:1247–1260

    Article  CAS  Google Scholar 

  • Zhang XB, Liu P, Yang YS, Xu G (2007) Effect of Al in soil on photosynthesis and related morphological and physiological characteristics of two soybean genotypes. Bot Stud 48:435–444

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Lazarević.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazarević, B., Horvat, T. & Poljak, M. Effect of Acid Aluminous Soil on Photosynthetic Parameters of Potato (Solanum tuberosum L.). Potato Res. 57, 33–46 (2014). https://doi.org/10.1007/s11540-014-9251-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11540-014-9251-7

Keywords

Navigation