Skip to main content
Log in

On a Class of Deterministic Population Models with Stochastic Foundation

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Generalising a site-based stochastic model due to Royama, Solé et al. and Sumpter et al., we investigate competition in a single species with discrete, non-overlapping generations. We show that the deterministic limit of the dynamics depends on a few easily interpretable parameters only. Further, we discuss qualitative properties and limit sets of the corresponding difference equations, and we relate these to modes of competition. Moreover, a detailed analysis of stochastic effects in some relevant scenarios indicates that the behaviour of the stochastic model is very sensitive to further details of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Beverton, R. J. H., & Holt, S. J. (1957). Fisheries investigations, Ser. 2 : Vol. 19. On the dynamics of exploited fish populations. London: H.M. Stationery Office.

    Google Scholar 

  • Brännström, A., & Sumpter, D. J. T. (2005). The role of competition and clustering in population dynamics. Proc. R. Soc. B, 272, 2065–2072.

    Article  Google Scholar 

  • Brännström, A., & Sumpter, D. J. T. (2006). Stochastic analogues of deterministic single-species population models. Theor. Popul. Biol., 69, 442–451.

    Article  MATH  Google Scholar 

  • Campbell, N. A., & Reece, J. B. (2004). Biology (7th ed.). San Francisco: Benjamin-Cummings.

    Google Scholar 

  • Geritz, S. A. H., & Kisdi, E. (2004). On the mechanistic underpinning of discrete-time population models with complex dynamics. J. Theor. Biol., 228, 261–269.

    Article  MathSciNet  Google Scholar 

  • Hassell, M. P. (1974). Density dependence in single species populations. J. Anim. Ecol., 44, 283–296.

    Article  Google Scholar 

  • Hassell, M. P., Lawton, J. H., & May, R. M. (1976). Patterns of dynamical behavior in single species populations. J. Anim. Ecol., 42, 471–486.

    Article  Google Scholar 

  • Johansson, A., & Sumpter, D. J. T. (2003). From local interactions to population dynamics in site-based models of ecology. Theor. Popul. Biol., 64, 419–517.

    Article  Google Scholar 

  • Johst, K., Berryman, A., & Lima, M. (2008). From individual interactions to population dynamics: individual resource partitioning simulation exposes the cause of nonlinear intra-specific competition. Popul. Ecol., 50, 79–90.

    Article  Google Scholar 

  • Li, T. Y., & Yorke, J. A. (1975). Period three implies chaos. Am. Math. Mon., 82, 985–992.

    Article  MathSciNet  MATH  Google Scholar 

  • Lomnicki, A., & Sedziwy, S. (1988). Resource partitioning and population stability under exploitation competition. J. Theor. Biol., 132, 119–120.

    Article  MathSciNet  Google Scholar 

  • May, R. M., & Oster, G. F. (1976). Bifurcations and dynamic complexity in simple ecological models. Am. Nat., 110, 573–599.

    Article  Google Scholar 

  • Moran, P. A. P. (1950). Some remarks on animal population dynamics. Biometrics, 6, 250–258.

    Article  Google Scholar 

  • Murray, J. D. (1993). Mathematical biology (2nd ed.). Heidelberg: Springer.

    Book  MATH  Google Scholar 

  • Nasell, I. (2002). Measles outbreaks are not chaotic. In The IMA volumes in mathematics and its applications : Vol. 126. Mathematical approaches for emerging and reemerging infectious diseases: models, methods, and theory (pp. 85–114). New York: Springer.

    Google Scholar 

  • Nicholson, A. J. (1954). An outline of the dynamics of animal populations. Aust. J. Zool., 2, 9–65.

    Article  Google Scholar 

  • Ricker, W. E. (1954). Stock and recruitment. J. Fish. Res. Board Can., 11(5), 559–622.

    Article  Google Scholar 

  • Royama, T. (1992). Analytical population dynamics. London: Chapman & Hall.

    Google Scholar 

  • Sharkovski, A. N. (1965). On cycles and structure of a continuous map. Ukr. Math. J., 17, 104–111 (in Russian).

    Article  Google Scholar 

  • Skellam, J. G. (1951). Random dispersal in theoretical populations. Biometrika, 38, 196–218.

    MathSciNet  MATH  Google Scholar 

  • Solé, R. V., Gamarra, J. G. P., Ginovart, M., & Lopez, D. (1999). Controlling chaos in ecology: from deterministic to individual-based models. Bull. Math. Biol., 61, 1187–1207.

    Article  Google Scholar 

  • Sumpter, D. J. T., & Broomhead, D. S. (2001). Relating individual behavior to population dynamics. Proc. R. Soc. B, 268, 925–932.

    Article  Google Scholar 

  • Thunberg, H. (2001). Periodicity versus chaos in one-dimensional dynamics. SIAM Rev., 43, 3–30.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volkmar Liebscher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gotzen, B., Liebscher, V. & Walcher, S. On a Class of Deterministic Population Models with Stochastic Foundation. Bull Math Biol 73, 1559–1582 (2011). https://doi.org/10.1007/s11538-010-9581-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-010-9581-9

Keywords

Navigation