Bulletin of Mathematical Biology

, Volume 72, Issue 8, pp 2004–2018

Modeling Optimal Intervention Strategies for Cholera

  • Rachael L. Miller Neilan
  • Elsa Schaefer
  • Holly Gaff
  • K. Renee Fister
  • Suzanne Lenhart
Original Article

DOI: 10.1007/s11538-010-9521-8

Cite this article as:
Miller Neilan, R.L., Schaefer, E., Gaff, H. et al. Bull. Math. Biol. (2010) 72: 2004. doi:10.1007/s11538-010-9521-8

Abstract

While cholera has been a recognized disease for two centuries, there is no strategy for its effective control. We formulate a mathematical model to include essential components such as a hyperinfectious, short-lived bacterial state, a separate class for mild human infections, and waning disease immunity. A new result quantifies contributions to the basic reproductive number from multiple infectious classes. Using optimal control theory, parameter sensitivity analysis, and numerical simulations, a cost-effective balance of multiple intervention methods is compared for two endemic populations. Results provide a framework for designing cost-effective strategies for diseases with multiple intervention methods.

Keywords

Cholera SIR model Sensitivity analysis Basic reproductive number Optimal control 

Copyright information

© Society for Mathematical Biology 2010

Authors and Affiliations

  • Rachael L. Miller Neilan
    • 1
  • Elsa Schaefer
    • 2
  • Holly Gaff
    • 3
  • K. Renee Fister
    • 4
  • Suzanne Lenhart
    • 1
  1. 1.Department of MathematicsUniversity of TennesseeKnoxvilleUSA
  2. 2.Department of MathematicsMarymount UniversityArlingtonUSA
  3. 3.Virginia Modeling, Analysis and Simulation Center and the School of Community and Environmental HealthOld Dominion UniversityNorfolkUSA
  4. 4.Department of Mathematics and StatisticsMurray State UniversityMurrayUSA

Personalised recommendations