Skip to main content
Log in

Modelling and Analysis of Planar Cell Polarity

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Planar cell polarity (PCP) occurs in the epithelia of many animals and can lead to the alignment of hairs, bristles, and feathers. Here, we present two approaches to modelling this phenomenon. The aim is to discover the basic mechanisms that drive PCP, while keeping the models mathematically tractable. We present a feedback and diffusion model, in which adjacent cell sides of neighbouring cells are coupled by a negative feedback loop and diffusion acts within the cell. This approach can give rise to polarity, but also to period two patterns. Polarisation arises via an instability provided a sufficiently strong feedback and sufficiently weak diffusion. Moreover, we discuss a conservative model in which proteins within a cell are redistributed depending on the amount of proteins in the neighbouring cells, coupled with intracellular diffusion. In this case, polarity can arise from weakly polarised initial conditions or via a wave provided the diffusion is weak enough. Both models can overcome small anomalies in the initial conditions. Furthermore, the range of the effects of groups of cells with different properties than the surrounding cells depends on the strength of the initial global cue and the intracellular diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adler, P.N., 2002. Planar signaling and morphogenesis in Drosophila. Dev. Cell 2, 525–535.

    Article  Google Scholar 

  • Adler, P.N., Krasnow, R.E., Liu, J., 1997. Tissue polarity points from cells that have higher frizzled levels towards cells that have lower frizzled levels. Curr. Biol. 7, 940–949.

    Article  Google Scholar 

  • Amonlirdviman, K., Khare, N.A., Tree, D.R.P., Chen, W.-S., Axelrod, J.D., Tomlin, C.J., 2005. Mathematical modeling of planar cell polarity to understand domineering nonautonomy. Science 307, 423–426.

    Article  Google Scholar 

  • Belle, A., Tanay, A., Bitincka, L., Shamir, R., O’Shea, E., 2006. Quantification of protein half-lives in the budding yeast proteome. Proc. Natl. Acad. Sci. USA, 103, 13004–13009.

    Article  Google Scholar 

  • Chen, W.-S., Antic, D., Matis, M., Logan, C.Y., Povelones, M., Abderson, G.A., Nusse, R., Axelrod, J.D., 2008. Asymmetric homotypic interactions of the atypical cadherin flamingo mediate intercellular polarity signaling. Cell 133, 1093–1105.

    Article  Google Scholar 

  • Collier, J.R., Monk, N.A.M., Maini, P.K., Lewis, J.H., 1996. Pattern formation by lateral inhibition with feedback: A mathematical model of Delta-Notch intercellular signalling. J. Theor. Biol. 183, 429–446.

    Article  Google Scholar 

  • Elmer, C.E., Van Vleck, E.S., 1999. Analysis and computation of travelling wave solutions of bistable differential-difference equations. Nonlinearity 12, 771–798.

    Article  MATH  MathSciNet  Google Scholar 

  • Gagliardi, M., Piddini, E., Vincent, J.-P., 2008. Endocytosis: A positive or a negative influence on Wnt signalling? Traffic 9, 1–9.

    Article  Google Scholar 

  • Kacmarczyk, T., Craddock, E.M., 2000. Cell size is a factor in body size variation among Hawaiian and nonHawaiian species of Drosophila. Drosoph. Inf. Serv. 83, 144–148.

    Google Scholar 

  • Keener, J.P., 1987. Propagation and its failure in coupled systems of discrete excitable cells. SIAM J. Appl. Math. 47, 556–572.

    Article  MATH  MathSciNet  Google Scholar 

  • Kholodenko, B.N., Hoek, J.B., Westerhoff, H.V., 2000. Why cytoplasmic signalling proteins should be recruited to cell membranes. Cell Biol. 10, 173–178.

    Google Scholar 

  • Le Garrec, J.-F., Kerszberg, M., 2008. Modeling polarity buildup and cell fate decision in the fly eye: Insight into the connection between the PCP and Notch pathways. Dev. Genes Evol. 218, 413–426.

    Article  Google Scholar 

  • Le Garrec, J.-F., Lopez, P., Kerszberg, M., 2006. Establishment and maintenance of planar epithelial cell polarity by asymmetric cadherin bridges: A computer model. Dev. Dyn. 235, 235–246.

    Article  Google Scholar 

  • Murray, J.D., 1989. Mathematical Biology. Springer, Berlin.

    MATH  Google Scholar 

  • Owen, M.R., 2002. Waves and propagation failure in discrete space models with nonlinear coupling and feedback. Physica D 173, 59–76.

    Article  MATH  MathSciNet  Google Scholar 

  • Plahte, E., Øyehaug, L., 2007. Pattern-generating travelling waves in a discrete multicellular system with lateral inhibition. Physica D 226, 117–128.

    MATH  MathSciNet  Google Scholar 

  • Raffard, R.L., Amonlirdviman, K., Axelrod, J.D., Tomlin, C.J., 2008. An adjoint-based parameter identification algorithm applied to planar cell polarity signaling. IEEE Trans. Automat. Contr. 53 (Special Issue on Systems Biology), 109–121. DOI: 10.1109/TAC.2007.911362.

    Article  MathSciNet  Google Scholar 

  • Shimada, Y., Yonemura, S., Ohkura, H., Strutt, D., Uemura, T., 2006. Polarized transport of Frizzled along the planar microtubule arrays in Drosophila wing epithelium. Dev. Cell 10(4), 209–222.

    Article  Google Scholar 

  • Simons, M., Mlodzik, M., 2008. Planar cell polarity signaling: From fly development to human disease. Annu. Rev. Genet. 42, 517–540.

    Article  Google Scholar 

  • Strutt, D., 2002. The asymmetric subcellular localisation of components of the planar polarity pathway. Semim. Cell Dev. Biol. 13, 225–231.

    Article  Google Scholar 

  • Strutt, D., Strutt, H., 2007. Differential activities of the core planar polarity proteins during Drosophila wing patterning. Dev. Biol. 302, 181–194.

    Article  Google Scholar 

  • Vinson, C.R., Adler, P.N., 1987. Directional non-cell autonomy and the transmission of polarity information by the frizzled gene of Drosophila. Nature 329, 549–551.

    Article  Google Scholar 

  • Wu, J., Mlodzik, M., 2008. The frizzled extracellular domain is a ligand for Van Gogh/Stbm during nonautonomous planar cell polarity signaling. Dev. Cell 15, 462–469.

    Article  Google Scholar 

  • Xu, T., Rubin, G.M., 1993. Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117, 1223–1237.

    Google Scholar 

  • Zallen, J.A., 2007. Planar polarity and tissue morphogenesis. Cell 129, 1051–1063.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Schamberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schamberg, S., Houston, P., Monk, N.A.M. et al. Modelling and Analysis of Planar Cell Polarity. Bull. Math. Biol. 72, 645–680 (2010). https://doi.org/10.1007/s11538-009-9464-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-009-9464-0

Keywords

Navigation