Bulletin of Mathematical Biology

, Volume 70, Issue 3, pp 745–768

Klebsiella pneumoniae Flocculation Dynamics

  • D. M. Bortz
  • T. L. Jackson
  • K. A. Taylor
  • A. P. Thompson
  • J. G. Younger
Original Article

DOI: 10.1007/s11538-007-9277-y

Cite this article as:
Bortz, D.M., Jackson, T.L., Taylor, K.A. et al. Bull. Math. Biol. (2008) 70: 745. doi:10.1007/s11538-007-9277-y

Abstract

The bacterial pathogen Klebsiella pneumoniae is a cause of community- and hospital-acquired lung, urinary tract and blood stream infections. It is a common contaminant of indwelling catheters and it is theorized in that context that systemic infection follows shedding of aggregates off of surface-adherent biofilm colonies. In an effort to better understand bacterial proliferation in the host bloodstream, we develop a PDE model for the flocculation dynamics of Klebsiella pneumoniae in suspension. Existence and uniqueness results are provided, as well as a brief description of the numerical approximation scheme. We generate artificial data and illustrate the requirements to accurately identify proliferation, aggregation, and fragmentation of flocs in the experimental domain of interest.

Keywords

Klebsiella pneumoniae Aggregation Flocculation Parameter identification 

Copyright information

© Society for Mathematical Biology 2007

Authors and Affiliations

  • D. M. Bortz
    • 1
  • T. L. Jackson
    • 2
  • K. A. Taylor
    • 3
  • A. P. Thompson
    • 4
  • J. G. Younger
    • 4
  1. 1.Department of Applied MathematicsUniversity of ColoradoBoulderUSA
  2. 2.Department of MathematicsUniversity of MichiganAnn ArborUSA
  3. 3.Columbia UniversityNew YorkUSA
  4. 4.Department of Emergency MedicineUniversity of MichiganAnn ArborUSA

Personalised recommendations