Bulletin of Mathematical Biology

, Volume 69, Issue 1, pp 265–288

Modeling Tick-Borne Disease: A Metapopulation Model

Original Article

DOI: 10.1007/s11538-006-9125-5

Cite this article as:
Gaff, H.D. & Gross, L.J. Bull. Math. Biol. (2007) 69: 265. doi:10.1007/s11538-006-9125-5


Recent increases in reported outbreaks of tick-borne diseases have led to increased interest in understanding and controlling epidemics involving these transmission vectors. Mathematical disease models typically assume constant population size and spatial homogeneity. For tick-borne diseases, these assumptions are not always valid. The disease model presented here incorporates non-constant population sizes and spatial heterogeneity utilizing a system of differential equations that may be applied to a variety of spatial patches. We present analytical results for the one patch version and find parameter restrictions under which the populations and infected densities reach equilibrium. We then numerically explore disease dynamics when parameters are allowed to vary spatially and temporally and consider the effectiveness of various tick-control strategies.


Tick-borne diseaseEhrlichiosisEpidemiologyVector-borne disease model

Copyright information

© Society for Mathematical Biology 2006

Authors and Affiliations

  1. 1.Department of Epidemiology and Preventive Medicine, School of MedicineUniversity of MarylandBaltimoreUSA
  2. 2.University of TennesseeKnoxvilleUSA