, Volume 68, Issue 2, pp 451-466
Date: 04 Apr 2006

Density-dependent migration and synchronism in metapopulations

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


A spatially explicit metapopulation model with density-dependent dispersal is proposed in order to study the stability of synchronous dynamics. A stability criterion is obtained based on the computation of the transversal Liapunov number of attractors on the synchronous invariant manifold. We examine in detail a special case of density-dependent dispersal rule where migration does not occur if the patch density is below a certain critical density, while the fraction of individuals that migrate to other patches is kept constant if the patch density is above the threshold level. Comparisons with density-independent migration models indicate that this simple density-dependent dispersal mechanism reduces the stability of synchronous dynamics. We were able to quantify exactly this loss of stability through the frequency that synchronous trajectories are above the critical density.