1.

P. Biran, Symplectic packing in dimension 4, Geom. Funct. Anal.,

**7** (1997), 420–437.

Google Scholar2.

P. Biran, A stability property of symplectic packing, Invent. Math.,

**136** (1999), 123–155.

Google Scholar3.

P. Biran and O. Cornea, Quantum structures for Lagrangian submanifolds, arXiv:0708.4221.

4.

K. Cieliebak, A. Floer and H. Hofer, Symplectic homology. II. A general construction, Math. Z., **218** (1995), 103–122.

5.

K. Cieliebak, H. Hofer, J. Latschev and F. Schlenk, Quantitative symplectic geometry, In: Dynamics, Ergodic Theory, and Geometry, Math. Sci. Res. Inst. Publ., **54**, Cambridge Univ. Press, 2007, pp. 1–44; arXiv:math/0506191.

6.

A. Craw and M. Reid, How to calculate *A*-Hilb \({\mathbb{C}}^3\), arXiv:math/9909085.

7.

I. Ekeland and H. Hofer, Symplectic topology and Hamiltonian dynamics, Math. Z.,

**200** (1989), 355–378.

MATHCrossRefMathSciNetGoogle Scholar8.

Y. Eliashberg, Rigidity of symplectic and contact structures, Abstracts of reports to the 7th Leningrad International Topology Conference, 1982.

9.

A. Floer, H. Hofer and K. Wysocki, Applications of symplectic homology. I, Math. Z.,

**217** (1994), 577–606.

MATHCrossRefMathSciNetGoogle Scholar10.

W. Fulton, Introduction to Toric Varieties, Ann. of Math. Stud., **131**, Princeton Univ. Press, 1993.

11.

M. Gromov, Pseudo holomorphic curves in symplectic manifolds, Invent.Math.,

**82** (1985), 307–347.

Google Scholar12.

L. Guth, Symplectic embeddings of polydisks, arXiv:0709.1957.

13.

G.H. Hardy and J.E. Littlewood, Some problems of Diophantine approximation: The lattice-points of a right-angled triangle, Proc. London Math. Soc.,

**s2-20** (1922), 15–36.

Google Scholar14.

G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, Oxford Univ. Press, 1938.

15.

R. Hind and E. Kerman, New obstructions to symplectic embeddings, arXiv:0906.4296.

16.

H. Hofer, Estimates for the energy of a symplectic map, Comment.Math. Helv.,

**68** (1993), 48–72.

Google Scholar17.

H. Hofer and E. Zehnder, A new capacity for symplectic manifolds, In: Analysis, et cetera, (eds. P.H. Rabinowitz and E. Zehnder), Academic Press, Boston, MA, 1990, pp. 405–429.

18.

M. Hutchings and C. Taubes, Gluing pseudoholomorphic curves along branched covered cylinders. I, arXiv:math/0701300, to appear in J. Symplectic Geom.

19.

F. Lalonde and D. McDuff, The geometry of symplectic energy, Ann. of Math. (2),

**141** (1995), 349–371.

MATHCrossRefMathSciNetGoogle Scholar20.

B.-H. Li and T.-J. Li, Symplectic genus, minimal genus and diffeomorphisms, Asian J. Math.,

**6** (2002), 123–144.

MATHMathSciNetGoogle Scholar21.

D. McDuff, Symplectic embeddings of 4-dimensional ellipsoids, to appear in J. Topol. (2009).

22.

D. McDuff and L. Polterovich, Symplectic packings and algebraic geometry, Invent. Math.,

**115** (1994), 405–429.

MATHCrossRefMathSciNetGoogle Scholar23.

D. McDuff and F. Schlenk, The embedding capacity of 4-dimensional symplectic ellipsoids, in preparation.

24.

E. Opshtein, Maximal symplectic packings of \({\mathbb{P}}^{2}\), arXiv:math/0610677.

25.

P. Popescu-Pampu, The geometry of continued fractions and the topology of surface singularities, arXiv:math/0506432.

26.

F. Schlenk, Embedding Problems in Symplectic Geometry, de Gruyter Exp. Math., de Gruyter, Berlin, 2005.

27.

L. Traynor, Symplectic packing constructions, J. Differential Geom.,

**42** (1995), 411–429.

Google Scholar