Skip to main content
Log in

Multiplane spectroscopic whole-body photoacoustic imaging of small animals in vivo

  • Special Issue – Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

We have successfully developed a multiscale acoustic-resolution photoacoustic tomography system in a single imaging platform. By switching between ultrasound transducers (center frequencies 5 and 40 MHz) and optical condensers, we have photoacoustically imaged microvasculatures of small animals in vivo at different scales. Further, we have extended the field of view of our imaging system to entire bodies of small animals. At different imaging planes, we have noninvasively imaged the major blood vessels (e.g., descending aorta, intercostal vessels, cephalic vessels, brachial vessels, femoral vessels, popliteal vessels, lateral marginal vessels, cranial mesenteric vessels, mammalian vessels, carotid artery, jugular vein, subclavian vessels, iliac vessels, and caudal vessels) as well as intact internal organs (e.g., spleen, liver, kidney, intestine, cecum, and spinal cord) of the animals in vivo. The spectroscopic whole-body photoacoustic imaging clearly reveals the spectral responses of the internal structures. Similar to other existing preclinical whole-body imaging systems, this whole-body photoacoustic tomography can be a useful tool for small-animal research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Akers WJ, Edwards WB, Kim C, Xu BG, Erpelding TN, Wang LHV, Achilefu S (2012) Multimodal sentinel lymph node mapping with single-photon emission computed tomography (SPECT)/computed tomography (CT) and photoacoustic tomography. Transl Res 159(3):175–181. doi:10.1016/j.trsl.2011.09.006

    Article  PubMed  PubMed Central  Google Scholar 

  2. Akers WJ, Kim C, Berezin M, Guo K, Fuhrhop R, Lanza GM, Fischer GM, Daltrozzo E, Zumbusch A, Cai X, Wang LV, Achilefu S (2011) Noninvasive photoacoustic and fluorescence sentinel lymph node identification using dye-loaded perfluorocarbon nanoparticles. ACS Nano 5(1):173–182. doi:10.1021/Nn102274q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Beard P (2011) Biomedical photoacoustic imaging. Interface Focus 1(4):602–631. doi:10.1098/rsfs.2011.0028

    Article  PubMed  PubMed Central  Google Scholar 

  4. Biosphera. http://www.biosphera.com.br

  5. ENDRA. http://www.endrainc.com

  6. Foster FS, Hossack J, Adamson SL (2011) Micro-ultrasound for preclinical imaging. Interface Focus 1(4):576–601. doi:10.1098/rsfs.2011.0037

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hu S, Maslov K, Tsytsarev V, Wang LV (2009) Functional transcranial brain imaging by optical-resolution photoacoustic microscopy. J Biomed Opt 14(4). doi:10.1117/1.3194136

  8. ItheraMedical. Available via http://www.ithera-medical.com

  9. Jeon M, Oh J, Kim J, Peterson T, Chen J, Kim C (2013) Nonionizing photoacoustic cystography with near-infrared absorbing gold nanostructures as optical-opaque tracers. Nanomedicine. doi:10.2217/nnm.13.103

    PubMed Central  Google Scholar 

  10. Jeon M, Kim C (2013) Multimodal Photoacoustic Tomography. IEEE Trans Multimed 15(5):975–982. doi:10.1109/Tmm.2013.2244203

    Article  Google Scholar 

  11. Judenhofer MS, Cherry SR (2013) Applications for preclinical PET/MRI. Semin Nucl Med 43(1):19–29. doi:10.1053/j.semnuclmed.2012.08.004

    Article  PubMed  Google Scholar 

  12. Kagadis GC, Loudos G, Katsanos K, Langer SG, Nikiforidis GC (2010) In vivo small animal imaging: current status and future prospects. Med Phys 37(12):6421–6442. doi:10.1118/1.3515456

    Article  PubMed  Google Scholar 

  13. Kersemans V, Thompson J, Cornelissen B, Woodcock M, Allen PD, Buls N, Muschel RJ, Hill MA, Smart SC (2011) Micro-CT for anatomic referencing in PET and SPECT: radiation dose, biologic damage, and image quality. J Nucl Med 52(11):1827–1833. doi:10.2967/jnumed.111.089151

    Article  PubMed  Google Scholar 

  14. Kim C, Cho EC, Chen JY, Song KH, Au L, Favazza C, Zhang QA, Cobley CM, Gao F, Xia YN, Wang LHV (2010) In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages. ACS Nano 4(8):4559–4564. doi:10.1021/Nn100736c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim C, Favazza C, Wang LHV (2010) In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths. Chem Rev 110(5):2756–2782. doi:10.1021/Cr900266s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim C, Jeon M, Wang LV (2011) Nonionizing photoacoustic cystography in vivo. Opt Lett 36(18):3599–3601. doi:10.1364/OL.36.003599

    Article  CAS  PubMed  Google Scholar 

  17. Liao LD, Lin CT, Shih YYI, Duong TQ, Lai HY, Wang PH, Wu R, Tsang S, Chang JY, Li ML, Chen YY (2012) Transcranial imaging of functional cerebral hemodynamic changes in single blood vessels using in vivo photoacoustic microscopy. J Cerebr Blood Flow Metab 32(6):938–951. doi:10.1038/jcbfm.2012.42

    Article  CAS  Google Scholar 

  18. Liao LD, Tsytsarev V, Delgado-Martinez I, Li ML, Erzurumlu R, Vipin A, Orellana J, Lin YR, Lai HY, Chen YY, Thakor NV (2013) Neurovascular coupling: in vivo optical techniques for functional brain imaging. Biomed Eng Online 12. doi:10.1186/1475-925x-12-38

  19. Mallidi S, Luke GP, Emelianov S (2011) Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance. Trends Biotechnol 29(5):213–221. doi:10.1016/j.tibtech.2011.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Maslov K, Stoica G, Wang LHV (2005) In vivo dark-field reflection-mode photoacoustic microscopy. Opt Lett 30(6):625–627. doi:10.1364/Ol.30.000625

    Article  PubMed  Google Scholar 

  21. Ntziachristos V (2010) Going deeper than microscopy: the optical imaging frontier in biology. Nat Methods 7(8):603–614. doi:10.1038/Nmeth.1483

    Article  CAS  PubMed  Google Scholar 

  22. OMLC. http://omlc.ori.edu/spectra

  23. Pramanik M, Wang LV (2009) Thermoacoustic and photoacoustic sensing of temperature. J Biomed Opt 14(5). doi:10.1117/1.3247155

  24. Razansky D, Buehler A, Ntziachristos V (2011) Volumetric real-time multispectral optoacoustic tomography of biomarkers. Nat Protoc 6(8):1121–1129. doi:10.1038/nprot.2011.351

    Article  CAS  PubMed  Google Scholar 

  25. Ritman EL (2011) Current status of developments and applications of micro-CT. Annu Rev Biomed Eng 13:531–552. doi:10.1146/annurev-bioeng-071910-124717

    Article  CAS  PubMed  Google Scholar 

  26. Song KH, Wang LV (2007) Deep reflection-mode photoacoustic imaging of biological tissue. J Biomed Opt 12(6). doi:10.1117/1.2818045

  27. Song L, Kim C, Maslov K, Shung KK, Wang LHV (2009) High-speed dynamic 3D photoacoustic imaging of sentinel lymph node in a murine model using an ultrasound array. Med Phys 36(8):3724–3729. doi:10.1118/1.3168598

    Article  PubMed  PubMed Central  Google Scholar 

  28. Su R, Ermilov SA, Liopo AV, Oraevsky AA (2012) Three-dimensional optoacoustic imaging as a new noninvasive technique to study long-term biodistribution of optical contrast agents in small animal models. J Biomed Opt 17(10). doi:10.1117/1.Jbo.17.10.101506

  29. Tsytsarev V, Bernardelli C, Maslov K (2012) Living brain optical imaging: technology, methods and applications. J Neurosci Neuroeng 1(2):180–192

    Article  Google Scholar 

  30. VISUALSONICS. http://www.visualsonics.com

  31. Wang LHV, Hu S (2012) Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335(6075):1458–1462. doi:10.1126/science.1216210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xia J, Wang LHV (2014) Small-animal whole-body photoacoustic tomography: a review. IEEE Trans Bio Med Eng 61(5):1380–1389

    Article  Google Scholar 

  33. Yao JJ, Maslov KI, Shi YF, Taber LA, Wang LHV (2010) In vivo photoacoustic imaging of transverse blood flow by using Doppler broadening of bandwidth. Opt Lett 35(9):1419–1421. doi:10.1364/Ol.35.001419

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhang Y, Jeon M, Rich LJ, Hong H, Geng J, Zhang Y, Shi S, Barnhart TE, Alexandridis P, Huizinga JD, Seshadri M, Cai W, Kim C, Lovell JF (2014) Non-invasive multimodal functional imaging of the intestine with frozen micellar naphthalocyanines. Nat Nanotechnol 9:631–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the research funds from an NRF-2013K1A3A1A20046921 (China-ROK Joint Research Project), an NRF-2011-0030075 (Engineering Research Center), and a NIPA-2013-H0203-13-1001 (IT Consilience Creative Program) of the Ministry of Science, ICT and Future Planning (MSIP), Republic of Korea.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chulhong Kim.

Additional information

Mansik Jeon and Jeesu Kim have contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeon, M., Kim, J. & Kim, C. Multiplane spectroscopic whole-body photoacoustic imaging of small animals in vivo. Med Biol Eng Comput 54, 283–294 (2016). https://doi.org/10.1007/s11517-014-1182-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-014-1182-6

Keywords

Navigation