, Volume 45, Issue 1, pp 79-90
Date: 03 Jan 2007

Dealing with mismatched fMRI activations in fMRI constrained EEG cortical source imaging: a simulation study assuming various mismatch types

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Although fMRI constrained EEG source imaging could be a promising approach to enhancing both spatial and temporal resolutions of independent fMRI and EEG analyses, it has been frequently reported that a hard fMRI constraint may cause severe distortion or elimination of significant EEG sources when there are distinct mismatches between fMRI activations and EEG sources. If estimating actual EEG source locations is important and fMRI prior information is used as an auxiliary tool to enhance the concentration of widespread EEG source distributions, it is reasonable to weaken the fMRI constraint when significantly mismatched sources exist. The present study demonstrates that the mismatch problem may be partially solved by extending the prior fMRI activation regions based on the conventional source imaging results. A hard fMRI constraint is then applied when there is no distinct mismatch, while a weakened fMRI constraint is applied when there are significant mismatches. A preliminary simulation study assuming different types of mismatches such as fMRI invisible, extra, and discrepancy sources demonstrated that this approach can be a promising option to treat mismatched fMRI activations in fMRI constrained EEG source imaging.