Skip to main content

Advertisement

Log in

On improved fractional Sobolev–Poincaré inequalities

  • Published:
Arkiv för Matematik

Abstract

We study a certain improved fractional Sobolev–Poincaré inequality on domains, which can be considered as a fractional counterpart of the classical Sobolev–Poincaré inequality. We prove the equivalence of the corresponding weak and strong type inequalities; this leads to a simple proof of a strong type inequality on John domains. We also give necessary conditions for the validity of an improved fractional Sobolev–Poincaré inequality, in particular, we show that a domain of finite measure, satisfying this inequality and a ‘separation property’, is a John domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R. A., Sobolev Spaces, Pure and Applied Mathematics 65, Academic Press, New York, 1975.

    MATH  Google Scholar 

  2. Adams, D. R. and Hedberg, L. I., Function Spaces and Potential Theory, Springer, Berlin, 1996.

    Book  MATH  Google Scholar 

  3. Bellido, J. C. and Mora-Corral, C., Existence for nonlocal variational problems in peridynamics, SIAM J. Math. Anal. 46 (2014), 890–916.

    Article  MathSciNet  MATH  Google Scholar 

  4. Bojarski, B., Remarks on Sobolev imbedding inequalities, in Complex Analysis, Joensuu 1987, Lecture Notes in Math. 1351, pp. 52–68, Springer, Berlin, 1988.

    Chapter  Google Scholar 

  5. Buckley, S. and Koskela, P., Sobolev–Poincaré implies John, Math. Res. Lett. 2 (1995), 577–593.

    Article  MathSciNet  MATH  Google Scholar 

  6. Dyda, B., On comparability of integral forms, J. Math. Anal. Appl. 318 (2006), 564–577.

    Article  MathSciNet  MATH  Google Scholar 

  7. Dyda, B. and Vähäkangas, A. V., Characterizations for fractional Hardy inequality, Adv. Calc. Var. 8 (2015), 173–182.

    MathSciNet  MATH  Google Scholar 

  8. Hajłasz, P., Sobolev inequalities, truncation method, and John domains, in Papers on Analysis, Rep. Univ. Jyväskylä Dep. Math. Stat. 83, pp. 109–126, Univ. Jyväskyä, Jyväskylä, 2001.

    Google Scholar 

  9. Jonsson, A. and Wallin, H., A Whitney extension theorem in \(L^{p}\) and Besov spaces, Ann. Inst. Fourier 28 (1978), 139–192.

    Article  MathSciNet  MATH  Google Scholar 

  10. Harjulehto, P. and Hurri-Syrjänen, R., On a \((q,p)\)-Poincaré inequality, J. Math. Anal. Appl. 337 (2008), 61–68.

    Article  MathSciNet  MATH  Google Scholar 

  11. Harjulehto, P., Hurri-Syrjänen, R. and Vähäkangas, A. V., On the \((1,p)\)-Poincaré inequality, Illinois J. Math. 56 (2012), 905–930.

    MathSciNet  MATH  Google Scholar 

  12. Hurri-Syrjänen, R. and Vähäkangas, A. V., Fractional Sobolev–Poincaré and fractional Hardy inequalities in unbounded John domains, Mathematika 61 (2015), 385–401.

    Article  MathSciNet  MATH  Google Scholar 

  13. Hurri-Syrjänen, R. and Vähäkangas, A. V., On fractional Poincaré inequalities, J. Anal. Math. 120 (2013), 85–104.

    Article  MathSciNet  MATH  Google Scholar 

  14. Martio, O., John domains, bi-Lipschitz balls and Poincaré inequality, Rev. Roumaine Math. Pures Appl. 33 (1988), 107–112.

    MathSciNet  MATH  Google Scholar 

  15. Maz’ya, V. G., Sobolev Spaces, Springer, Berlin, 1985.

    MATH  Google Scholar 

  16. Reshetnyak, Y. G., Integral representations of differentiable functions, in Partial Differential Equations, pp. 173–187, Nauka, Novosibirsk, 1986.

    Google Scholar 

  17. Shvartsman, P., Local approximations and intrinsic characterization of spaces of smooth functions on regular subsets of \({\mathbf{R}}^{n}\), Math. Nachr. 279 (2006), 1212–1241.

    Article  MathSciNet  MATH  Google Scholar 

  18. Väisälä, J., Exhaustions of John domains, Ann. Acad. Sci. Fenn., Ser. A 1 Math. 19 (1994), 47–57.

    MathSciNet  MATH  Google Scholar 

  19. Zhou, Y., Criteria for optimal global integrability of Hajłasz–Sobolev functions, Illinois J. Math. 55 (2011), 1083–1103.

    MathSciNet  MATH  Google Scholar 

  20. Zhou, Y., Fractional Sobolev extension and imbedding, Trans. Amer. Math. Soc. 367 (2015), 959–979.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lizaveta Ihnatsyeva.

Additional information

L.I. and A.V.V. were supported by the Finnish Academy of Science and Letters, Vilho, Yrjö and Kalle Väisälä Foundation. B.D. was supported in part by NCN grant 2012/07/B/ST1/03356. The authors would like to thank the referee for a careful reading of the manuscript and for the comments.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dyda, B., Ihnatsyeva, L. & Vähäkangas, A.V. On improved fractional Sobolev–Poincaré inequalities. Ark Mat 54, 437–454 (2016). https://doi.org/10.1007/s11512-015-0227-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11512-015-0227-x

Keywords

Navigation