Acta Mathematica

, Volume 208, Issue 2, pp 389–394

An inner amenable group whose von Neumann algebra does not have property Gamma


DOI: 10.1007/s11511-012-0079-1

Cite this article as:
Vaes, S. Acta Math (2012) 208: 389. doi:10.1007/s11511-012-0079-1


We construct inner amenable groups G with infinite conjugacy classes and such that the associated II1 factor has no non-trivial asymptotically central elements, i.e. does not have property Gamma of Murray and von Neumann. This solves a problem posed by Effros in 1975.

Copyright information

© Institut Mittag-Leffler 2012

Authors and Affiliations

  1. 1.Department of MathematicsKU LeuvenLeuvenBelgium

Personalised recommendations