Skip to main content
Log in

Constructing integrable systems of semitoric type

  • Published:
Acta Mathematica

Abstract

Let (M, ω) be a connected, symplectic 4-manifold. A semitoric integrable system on (M, ω) essentially consists of a pair of independent, real-valued, smooth functions J and H on M, for which J generates a Hamiltonian circle action under which H is invariant. In this paper we give a general method to construct, starting from a collection of five ingredients, a symplectic 4-manifold equipped a semitoric integrable system. Then we show that every semitoric integrable system on a symplectic 4-manifold is obtained in this fashion. In conjunction with the uniqueness theorem proved recently by the authors, this gives a classification of semitoric integrable systems on 4-manifolds, in terms of five invariants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atiyah, M. F., Convexity and commuting Hamiltonians. Bull. London Math. Soc., 14 (1982), 1–15.

    Article  MATH  MathSciNet  Google Scholar 

  2. Bourbaki, N., Éléments de mathématique. Fasc. XXXIII. Variétés différentielles et analytiques. Fascicule de résultats (Paragraphes 1 à 7). Actualités Scientifiques et Industrielles, 1333. Hermann, Paris, 1967.

  3. Brandsma, H., Paracompactness, covers and perfect maps, in Topology Explained. Topology Atlas, York University, Toronto, ON, 2003. Available at http://at.yorku.ca/p/a/c/a/00.htm.

  4. Daverman, R. J., Decompositions of Manifolds. AMS Chelsea Publishing, Providence, RI, 2007.

    MATH  Google Scholar 

  5. Delzant, T., Hamiltoniens périodiques et images convexes de l’application moment. Bull. Soc. Math. France, 116 (1988), 315–339.

    MATH  MathSciNet  Google Scholar 

  6. Dufour, J.-P. & Molino, P., Compactification d’actions de R n et variables action-angle avec singularités, in Symplectic Geometry, Groupoids, and Integrable Systems (Berkeley, CA, 1989), Math. Sci. Res. Inst. Publ., 20, pp. 151–167. Springer, New York, 1991.

  7. Duistermaat, J. J., On global action-angle coordinates. Comm. Pure Appl. Math., 33 (1980), 687–706.

    Article  MATH  MathSciNet  Google Scholar 

  8. Eliasson, L. H., Normal forms for Hamiltonian systems with Poisson commuting integrals—elliptic case. Comment. Math. Helv., 65 (1990), 4–35.

    Article  MATH  MathSciNet  Google Scholar 

  9. Gross, M. & Siebert, B., Affine manifolds, log structures, and mirror symmetry. Turkish J. Math., 27 (2003), 33–60.

    MATH  MathSciNet  Google Scholar 

  10. — Mirror symmetry via logarithmic degeneration data. I. J. Differential Geom., 72 (2006), 169–338.

    MATH  MathSciNet  Google Scholar 

  11. — Mirror symmetry via logarithmic degeneration data, II. J. Algebraic Geom., 19 (2010), 679–780.

    MATH  MathSciNet  Google Scholar 

  12. — From real affine geometry to complex geometry. Preprint, 2007. arXiv:math/0703822 [math.AG].

  13. Guillemin, V. & Sternberg, S., Convexity properties of the moment mapping. Invent. Math., 67 (1982), 491–513.

    Article  MATH  MathSciNet  Google Scholar 

  14. Leung, N. C. & Symington, M., Almost toric symplectic four-manifolds. J. Symplectic Geom., 8 (2010), 143–187.

    MATH  MathSciNet  Google Scholar 

  15. Miranda, E. & Zung, N. T., Equivariant normal form for nondegenerate singular orbits of integrable Hamiltonian systems. Ann. Sci. École Norm. Sup., 37 (2004), 819–839.

    MATH  Google Scholar 

  16. Pelayo, A. & Vũ Ngọc, S., Semitoric integrable systems on symplectic 4-manifolds. Invent. Math., 177 (2009), 571–597.

    Article  MATH  MathSciNet  Google Scholar 

  17. Symington, M., Four dimensions from two in symplectic topology, in Topology and Geometry of Manifolds (Athens, GA, 2001), Proc. Sympos. Pure Math., 71, pp. 153–208. Amer. Math. Soc., Providence, RI, 2003.

  18. Vũ Ngọc, S., On semi-global invariants for focus-focus singularities. Topology, 42 (2003), 365–380.

    Article  MathSciNet  Google Scholar 

  19. — Moment polytopes for symplectic manifolds with monodromy. Adv. Math., 208 (2007), 909–934.

    Article  MathSciNet  Google Scholar 

  20. Willard, S., General Topology. Dover, Mineola, NY, 2004.

    MATH  Google Scholar 

  21. Wloka, J. T., Rowley, B. & Lawruk, B., Boundary Value Problems for Elliptic Systems. Cambridge University Press, Cambridge, 1995.

    Book  MATH  Google Scholar 

  22. Ziegler, G. M., Lectures on Polytopes. Graduate Texts in Mathematics, 152. Springer, New York, 1995.

    MATH  Google Scholar 

  23. Zung, N. T., Symplectic topology of integrable Hamiltonian systems. I. Arnold–Liouville with singularities. Compositio Math., 101 (1996), 179–215.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Álvaro Pelayo.

Additional information

The first author was partially supported by an NSF post-doctoral fellowship. This work was done while the first author was at the Massachusetts Institute of Technology (2007–2008) and at the University of California, Berkeley (2008–2010).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pelayo, Á., Vũ Ngọc, S. Constructing integrable systems of semitoric type. Acta Math 206, 93–125 (2011). https://doi.org/10.1007/s11511-011-0060-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11511-011-0060-4

Keywords

Navigation