Acta Mathematica

, Volume 198, Issue 2, pp 231–298

Discrete Radon transforms and applications to ergodic theory

Authors

    • University of Wisconsin, Madison
  • Elias M. Stein
    • Princeton University
  • Akos Magyar
    • University of Georgia, Athens
  • Stephen Wainger
    • University of Wisconsin, Madison
Article

DOI: 10.1007/s11511-007-0016-x

Cite this article as:
Ionescu, A.D., Stein, E.M., Magyar, A. et al. Acta Math (2007) 198: 231. doi:10.1007/s11511-007-0016-x

Abstract

We prove Lp boundedness of certain non-translation-invariant discrete maximal Radon transforms and discrete singular Radon transforms. We also prove maximal, pointwise, and Lp ergodic theorems for certain families of non-commuting operators.

Copyright information

© Institut Mittag-Leffler 2007