Skip to main content
Log in

Water Distribution in Bacterial Spores: A Key Factor in Heat Resistance

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

The role of water, its distribution and its implication in the heat resistance of dried spores was investigated using DSC (Differential Scanning Calorimetry). Bacillus subtilis spores equilibrated at different water activity levels were heat treated under strictly controlled conditions. The temperature was increased linearly in pans with different resistances to pressure. Data from the heat-related transitions occurring in the spores were recorded and spore viability was assessed at different stages during DSC. The thermodynamic transitions observed were related to the water status in the spores and spore survival. The results demonstrated that water still remained in the spore core when water activity was as low as 0.13. The first transition occurred at around 150 °C and was assumed to be related to a mobile fraction of water from the outer layers of the spore. The second occurred at around 200 °C, which could correspond to a fraction of water embedded in the spore core. Moreover, the results showed that spore destruction during heating was favored by the amount of water remaining in the spore. The changes in their structure were also evaluated by FTIR (Fourier Transform Infrared Spectroscopy). This work offers new understanding about the distribution of water in spores and presents new elements on the heat resistance of spores in relation to their water content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W.L. Nicholson, N. Mukanata, G. Horneck, H.J. Melosh, P. Setlow, Microbiol. Mol. Biol. Rev. 64(3), 548–572 (2000)

    Article  CAS  Google Scholar 

  2. H. Nguyen Thi Minh, P. Dantigny, J.M. Perrier-Cornet, P. Gervais, n/a-n/a (2010).

  3. A. Colas de la Noue, V. Espinasse, J.M. Perrier-Cornet, P. Gervais, n/a-n/a (2012).

  4. L. Chen, T. Coolbear, R.M. Daniel, Int. Dairy J. 14(6), 495–504 (2004)

    Article  CAS  Google Scholar 

  5. L.J. Lima, H.J. Kamphuis, M.J.R. Nout, M.H. Zwietering, Food Microbiol. 28(3), 573–582 (2011)

    Article  CAS  Google Scholar 

  6. A.M. Witkowska, D.K. Hickey, M. Alonso-Gomez, M.G. Wilkinson, Food Control 22(3–4), 616–625 (2011)

    Article  Google Scholar 

  7. A. Driks, Microbiol. Mol. Biol. Rev. 63(1), 1–20 (1999)

    CAS  Google Scholar 

  8. B. Setlow, S. Atluri, R. Kitchel, K. Koziol-Dube, P. Setlow, J. Bacteriol. 188(11), 3740–3747 (2006)

    Article  CAS  Google Scholar 

  9. S.H. Black, P. Gerhardt, J. Bacteriol. 83(5), 960–967 (1962)

    CAS  Google Scholar 

  10. J.E. Algie, Curr. Microbiol. 11(5), 293–295 (1984)

    Article  Google Scholar 

  11. T.C. Beaman, P. Gerhardt, Appl. Environ. Microbiol. 52(6), 1242–1246 (1986)

    CAS  Google Scholar 

  12. S. Ablett, A.H. Darke, P.J. Lillford, D.R. Martin, Int. J. Food Sci. Technol. 34(1), 59–69 (1999)

    Article  CAS  Google Scholar 

  13. V. Sapru, T.P. Labuza, J. Food Sci. 58(2), 445–448 (1993)

    Article  Google Scholar 

  14. M.L. Stecchini, M.D. Torre, E. Venir, A. Morettin, P. Furlan, E. Maltini, Int. J. Food Microbiol. 106, 186–190 (2006)

    Article  Google Scholar 

  15. R.G.K. Leuschner, P.J. Lillford, Int. J. Food Microbiol. 80(2), 131–143 (2003)

    Article  CAS  Google Scholar 

  16. E.P. Sunde, P. Setlow, L. Hederstedt, B. Halle, Proc. Natl. Acad. Sci. U. S. A. 106(46), 19334–19339 (2009)

    Article  CAS  Google Scholar 

  17. K.F.A. Ross, E. Billing, J. Gen. Microbiol. 16(2), 418–425 (1957)

    Article  CAS  Google Scholar 

  18. G.O. Rubel, J. Appl. Microbiol. 83(2), 243–247 (1997)

    Article  CAS  Google Scholar 

  19. H. Nguyen Thi Minh, J.-M. Perrier-Cornet, P. Gervais, D. Champion, Food Biophys. 5(3), 238–246 (2010)

    Article  Google Scholar 

  20. S. Ghosal, T.J. Leighton, K.E. Wheeler, I.D. Hutcheon, P.K. Weber, Appl. Environ. Microbiol. 76(10), 3275–3282 (2010)

    Article  CAS  Google Scholar 

  21. Y. Maeda, T. Fujita, Y. Sugiura, S. Koga, J. Gen. Appl. Microbiol. 14, 217–226 (1968)

    Article  CAS  Google Scholar 

  22. J.A. Lindsay, T.C. Beaman, P. Gerhardt, J. Bacteriol. 163(2), 735–737 (1985)

    CAS  Google Scholar 

  23. J.H. Bradbury, J.R. Foster, B. Hammer, J. Lindsay, W.G. Murrell, Biochim. Biophys. Acta, Gen. Subj. 678(2), 157–164 (1981)

    Article  CAS  Google Scholar 

  24. R.G.K. Leuschner, P.J. Lillford, Int. J. Food Microbiol. 63(1–2), 35–50 (2001)

    Article  CAS  Google Scholar 

  25. Y. Ishihara, J. Takano, S. Mashimo, M. Yamamura, Thermochim. Acta 235(2), 153–160 (1994)

    Article  Google Scholar 

  26. Y. Ishihara, H. Saito, J. Takano, Cell Biochem. Funct. 17(1), 9–13 (1999)

    Article  CAS  Google Scholar 

  27. Y. Maeda, S. Koga, Netsu Sokutei 8(2), 57–61 (1981)

    Google Scholar 

  28. B.H. Belliveau, T.C. Beaman, H.S. Pankratz, P. Gerhardt, J. Bacteriol. 174(13), 4463–4474 (1992)

    CAS  Google Scholar 

  29. C.A. Miles, Appl. Environ. Microbiol. 72(1), 914–917 (2006)

    Article  CAS  Google Scholar 

  30. C.A. Miles, B.M. Mackey, S.E. Parsons, J. Gen. Microbiol. 132(4), 939–952 (1986)

    CAS  Google Scholar 

  31. D. Helm, D. Naumann, FEMS Microbiol. Lett. 126(1), 75–79 (1995)

    Article  CAS  Google Scholar 

  32. D.L. Perkins, C.R. Lovell, B.V. Bronk, B. Setlow, P. Setlow, M.L. Myrick, Appl. Spectrosc. 58(6), 749–753 (2004)

    Article  CAS  Google Scholar 

  33. A. Subramanian, J. Ahn, V.M. Balasubramaniam, L. Rodriguez-Saona, J. Agric. Food Chem. 54(26), 10300–10306 (2006)

    Article  CAS  Google Scholar 

  34. H. Nguyen Thi Minh, J.-M. Perrier-Cornet, P. Gervais, Appl. Microbiol. Biotechnol. 80, 107–114 (2008)

    Article  Google Scholar 

  35. N. Igura, Y. Kamimura, M.S. Islam, M. Shimoda, I. Hayakawa, Appl. Environ. Microbiol. 69(10), 6307–6310 (2003)

    Article  CAS  Google Scholar 

  36. S. De Lamo-Castellví, L.E. Rodríguez-Saona, J. Food Saf. 31(3), 401–407 (2011)

    Article  Google Scholar 

  37. M. Kansiz, P. Heraud, B. Wood, F. Burden, J. Beardall, D. McNaughton, Phytochemistry 52(3), 407–417 (1999)

    Article  CAS  Google Scholar 

  38. B. Perrenot, P. de Vallière, G. Widmann, J. Therm. Anal. Calorim. 38(3), 381–390 (1992)

    Article  CAS  Google Scholar 

  39. A.B. Butrow, R.J. Seyler, Thermochim. Acta 402(1–2), 145–152 (2003)

    Article  CAS  Google Scholar 

  40. D. Naumann, in Encyclopedia of Analytical Chemistry, ed. by R.A. Meyers (John Wiley & Sons Ltd, Chichester, 2000), pp. 102–131

    Google Scholar 

  41. A.P. Snyder, A. Tripathi, J.P. Dworzanski, W.M. Maswadeh, C.H. Wick, Anal. Chim. Acta 536(1–2), 283–293 (2005)

    Article  CAS  Google Scholar 

  42. A.P. Snyder, W.M. Maswadeh, C.H. Wick, J.P. Dworzanski, A. Tripathi, Thermochim. Acta 437(1–2), 87–99 (2005)

    Article  CAS  Google Scholar 

  43. A.E. Cowan, E.M. Olivastro, D.E. Koppel, C.A. Loshon, B. Setlow, P. Setlow, Proc. Natl. Acad. Sci. U. S. A. 101(20), 7733–7738 (2004)

    Article  CAS  Google Scholar 

  44. Y. Maeda, S. Noguchi, S. Koga, J. Gen. Appl. Microbiol. 20, 11–19 (1974)

    Article  CAS  Google Scholar 

  45. W.H. Coleman, P. Zhang, Y.Q. Li, P. Setlow, Lett. Appl. Microbiol. 50(5), 507–514 (2010)

    Article  CAS  Google Scholar 

  46. S.A. Grinshpun, A. Adhikari, C. Li et al., J. Aerosol Sci. 41(4), 352–363 (2010)

    Article  CAS  Google Scholar 

  47. I.V. Sochava, Biophys. Chem. 69(1), 31–41 (1997)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES-Brazil) for funding the PhD of Julia Hauck Tiburski and the Conseil Regional de Bourgogne for their financial support. We would also like to thank the Plateau Rhéologie des Matériaux Biologiques and the Plateau Imagerie Spectroscopique of the UMR-PAM, Université de Bourgogne/Agrosup Dijon for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Gervais.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tiburski, J.H., Rosenthal, A., Guyot, S. et al. Water Distribution in Bacterial Spores: A Key Factor in Heat Resistance. Food Biophysics 9, 10–19 (2014). https://doi.org/10.1007/s11483-013-9312-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-013-9312-5

Keywords

Navigation