Skip to main content
Log in

High Fat Diet Exacerbates Neuroinflammation in an Animal Model of Multiple Sclerosis by Activation of the Renin Angiotensin System

  • ORIGINAL ARTICLE
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Epidemiological studies suggest a positive correlation between the incidence and severity of multiple sclerosis (MS) and the intake of fatty acids. It remains to be clarified whether high fat diet (HFD) indeed can exacerbate the disease pathology associated with MS and what the underlying mechanisms are. In this study, we determined the influence of HFD on the severity and pathology of experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Mice were fed either normal diet (ND) or HFD and subsequently induced with EAE. Immunohistochemical staining and real-time PCR were used to determine immune cell infiltration and inflammatory mediators in the central nervous system (CNS). Our data show that HFD increases immune cell infiltration and inflammatory mediator production in the CNS and thereby aggravates EAE. Moreover, our data demonstrate that activation of the renin angiotensin system (RAS) is associated with the HFD-mediated effects on EAE severity. These results show that HFD exacerbates an autoreactive immune response within the CNS. This indicates that diets containing excess fat have a significant influence on neuroinflammation in EAE, which may have important implications for the treatment and prevention of neuroinflammatory disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alter M, Yamoor M, Harshe M (1974) Multiple sclerosis and nutrition. Arch Neurol 31:267–272

    Article  CAS  PubMed  Google Scholar 

  • Antonovsky A, Leibowitz U, Smith HA, Medalie JM, Balogh M, Kats R, Halpern L, Alter M (1965) Epidemiologic Study of Multiple Sclerosis in Israel. I. An Overall Review of Methods and Findings. Arch Neurol 13:183–193

    Article  CAS  PubMed  Google Scholar 

  • Aranami T, Yamamura T (2008) Th17 Cells and autoimmune encephalomyelitis (EAE/MS). Allergol Int Off J Jpn Soc Allergol 57:115–120

    Article  CAS  Google Scholar 

  • Bachmanov AA, Reed DR, Beauchamp GK, Tordoff MG (2002) Food intake, water intake, and drinking spout side preference of 28 mouse strains. Behav Genet 32:435–443

    Article  PubMed Central  PubMed  Google Scholar 

  • Bar-Or A, Oliveira EM, Anderson DE, Hafler DA (1999) Molecular pathogenesis of multiple sclerosis. J Neuroimmunol 100:252–259

    Article  CAS  PubMed  Google Scholar 

  • Berr C, Puel J, Clanet M, Ruidavets JB, Mas JL, Alperovitch A (1989) Risk factors in multiple sclerosis: a population-based case–control study in Hautes-Pyrenees, France. Acta Neurol Scand 80:46–50

    Article  CAS  PubMed  Google Scholar 

  • Bruce-Keller AJ, Keller JN, Morrison CD (2009) Obesity and vulnerability of the CNS. Biochim Biophys Acta 1792:395–400

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Calder PC et al (2011) Dietary factors and low-grade inflammation in relation to overweight and obesity. Br J Nutr 106(Suppl 3):S5–S78

    Article  CAS  PubMed  Google Scholar 

  • Diestel A, Aktas O, Hackel D, Hake I, Meier S, Raine CS, Nitsch R, Zipp F, Ullrich O (2003) Activation of microglial poly(ADP-ribose)-polymerase-1 by cholesterol breakdown products during neuroinflammation: a link between demyelination and neuronal damage. J Exp Med 198:1729–1740

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fernandez-Real JM, Pickup JC (2008) Innate immunity, insulin resistance and type 2 diabetes. Trends Endocrinol Metab: TEM 19:10–16

    Article  CAS  PubMed  Google Scholar 

  • Grimm MO, Grimm HS, Patzold AJ, Zinser EG, Halonen R, Duering M, Tschape JA, De Strooper B, Muller U, Shen J, Hartmann T (2005) Regulation of cholesterol and sphingomyelin metabolism by amyloid-beta and presenilin. Nat Cell Biol 7:1118–1123

    Article  CAS  PubMed  Google Scholar 

  • Grobe JL, Xu D, Sigmund CD (2008) An intracellular renin-angiotensin system in neurons: fact, hypothesis, or fantasy. Physiology (Bethesda) 23:187–193

    Article  CAS  Google Scholar 

  • Hellings N, Raus J, Stinissen P (2002) Insights into the immunopathogenesis of multiple sclerosis. Immunol Res 25:27–51

    Article  CAS  PubMed  Google Scholar 

  • Kolb H, Mandrup-Poulsen T (2010) The global diabetes epidemic as a consequence of lifestyle-induced low-grade inflammation. Diabetologia 53:10–20

    Article  CAS  PubMed  Google Scholar 

  • Lanz TV, Ding Z, Ho PP, Luo J, Agrawal AN, Srinagesh H, Axtell R, Zhang H, Platten M, Wyss-Coray T, Steinman L (2010) Angiotensin II sustains brain inflammation in mice via TGF-beta. J Clin Investig 120:2782–2794

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lauer K (1997) Diet and multiple sclerosis. Neurology 49:S55–S61

    Article  CAS  PubMed  Google Scholar 

  • Lavin DN, Joesting JJ, Chiu GS, Moon ML, Meng J, Dilger RN, Freund GG (2011) Fasting induces an anti-inflammatory effect on the neuroimmune system which a high-fat diet prevents. Obesity (Silver Spring) 19:1586–1594

    Article  CAS  Google Scholar 

  • Ledesma MD, Abad-Rodriguez J, Galvan C, Biondi E, Navarro P, Delacourte A, Dingwall C, Dotti CG (2003) Raft disorganization leads to reduced plasmin activity in Alzheimer’s disease brains. EMBO Rep 4:1190–1196

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mateos L, Ismail MA, Gil-Bea FJ, Schule R, Schols L, Heverin M, Folkesson R, Bjorkhem I, Cedazo-Minguez A (2011) Side chain-oxidized oxysterols regulate the brain renin-angiotensin system through a liver X receptor-dependent mechanism. J Biol Chem 286:25574–25585

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mehta LR, Dworkin RH, Schwid SR (2009) Polyunsaturated fatty acids and their potential therapeutic role in multiple sclerosis. Nat Clin Pract Neurol 5:82–92

    Article  CAS  PubMed  Google Scholar 

  • Milanski M, Degasperi G, Coope A, Morari J, Denis R, Cintra DE, Tsukumo DM, Anhe G, Amaral ME, Takahashi HK, Curi R, Oliveira HC, Carvalheira JB, Bordin S, Saad MJ, Velloso LA (2009) Saturated fatty acids produce an inflammatory response predominantly through the activation of TLR4 signaling in hypothalamus: implications for the pathogenesis of obesity. J Neurosci Off J Soc Neurosci 29:359–370

    Article  CAS  Google Scholar 

  • Morrison CD, Pistell PJ, Ingram DK, Johnson WD, Liu Y, Fernandez-Kim SO, White CL, Purpera MN, Uranga RM, Bruce-Keller AJ, Keller JN (2010) High fat diet increases hippocampal oxidative stress and cognitive impairment in aged mice: implications for decreased Nrf2 signaling. J Neurochem 114:1581–1589

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mueller AM, Pedre X, Stempfl T, Kleiter I, Couillard-Despres S, Aigner L, Giegerich G, Steinbrecher A (2008) Novel role for SLPI in MOG-induced EAE revealed by spinal cord expression analysis. J Neuroinflammation 5:20

    Article  PubMed Central  PubMed  Google Scholar 

  • Munger KL, Zhang SM, O’Reilly E, Hernan MA, Olek MJ, Willett WC, Ascherio A (2004) Vitamin D intake and incidence of multiple sclerosis. Neurology 62:60–65

    Article  CAS  PubMed  Google Scholar 

  • Piccio L, Stark JL, Cross AH (2008) Chronic calorie restriction attenuates experimental autoimmune encephalomyelitis. J Leukocyte Biol 84:940–948

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pistell PJ, Morrison CD, Gupta S, Knight AG, Keller JN, Ingram DK, Bruce-Keller AJ (2010) Cognitive impairment following high fat diet consumption is associated with brain inflammation. J Neuroimmunol 219:25–32

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Platten M, Youssef S, Hur EM, Ho PP, Han MH, Lanz TV, Phillips LK, Goldstein MJ, Bhat R, Raine CS, Sobel RA, Steinman L (2009) Blocking angiotensin-converting enzyme induces potent regulatory T cells and modulates TH1- and TH17-mediated autoimmunity. Proc Natl Acad Sci U S A 106:14948–14953

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rao AV, Rao LG (2007) Carotenoids and human health. Pharmacol Res Off J Ital Pharmacol Soc 55:207–216

    CAS  Google Scholar 

  • Saavedra JM (2011) Angiotensin II AT(1) Receptor blockers ameliorate inflammatory stress: a beneficial effect for the treatment of brain disorders. Cell Mol Neurobiol

  • Schwarz S, Leweling H (2005) Multiple sclerosis and nutrition. Mult Scler 11:24–32

    Article  CAS  PubMed  Google Scholar 

  • Sena A, Sarlieve LL, Rebel G (1985) Brain myelin of genetically obese mice. J Neurol Sci 68:233–243

    Article  CAS  PubMed  Google Scholar 

  • Sepcic J, Mesaros E, Materljan E, Sepic-Grahovac D (1993) Nutritional factors and multiple sclerosis in Gorski Kotar, Croatia. Neuroepidemiology 12:234–240

    Article  CAS  PubMed  Google Scholar 

  • Smolders J, Damoiseaux J, Menheere P, Hupperts R (2008) Vitamin D as an immune modulator in multiple sclerosis, a review. J Neuroimmunol 194:7–17

    Article  CAS  PubMed  Google Scholar 

  • Stegbauer J, Lee DH, Seubert S, Ellrichmann G, Manzel A, Kvakan H, Muller DN, Gaupp S, Rump LC, Gold R, Linker RA (2009) Role of the renin-angiotensin system in autoimmune inflammation of the central nervous system. Proc Natl Acad Sci U S A 106:14942–14947

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Suzuki Y, Ruiz-Ortega M, Lorenzo O, Ruperez M, Esteban V, Egido J (2003) Inflammation and angiotensin II. Int J Biochem Cell Biol 35:881–900

    Article  CAS  PubMed  Google Scholar 

  • Swank RL, Lerstad O, Strom A, Backer J (1952) Multiple sclerosis in rural Norway its geographic and occupational incidence in relation to nutrition. N Engl J Med 246:722–728

    Article  CAS  PubMed  Google Scholar 

  • Teunissen CE, Dijkstra CD, Polman CH, Hoogervorst EL, von Bergmann K, Lutjohann D (2003) Decreased levels of the brain specific 24S-hydroxycholesterol and cholesterol precursors in serum of multiple sclerosis patients. Neurosci Lett 347:159–162

    Article  CAS  PubMed  Google Scholar 

  • Thompson AJ (2008) Multiple sclerosis–a global disorder and still poorly managed. Lancet Neurol 7:1078–1079

    Article  PubMed  Google Scholar 

  • Thompson RH (1966) A biochemical approach to the problem of multiple sclerosis. Proc R Soc Med 59:269–276

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tola MR, Granieri E, Malagu S, Caniatti L, Casetta I, Govoni V, Paolino E, Cinzia Monetti V, Canducci E, Panatta GB (1994) Dietary habits and multiple sclerosis. A retrospective study in Ferrara, Italy. Acta Neurol 16:189–197

    CAS  Google Scholar 

  • Uranga RM, Bruce-Keller AJ, Morrison CD, Fernandez-Kim SO, Ebenezer PJ, Zhang L, Dasuri K, Keller JN (2010) Intersection between metabolic dysfunction, high fat diet consumption, and brain aging. J Neurochem 114:344–361

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034

    Google Scholar 

  • von Bohlen und Halbach O, Albrecht D (2006) The CNS renin-angiotensin system. Cell Tissue Res 326:599–616

    Article  Google Scholar 

  • Wheeler D, Bandaru VV, Calabresi PA, Nath A, Haughey NJ (2008) A defect of sphingolipid metabolism modifies the properties of normal appearing white matter in multiple sclerosis. Brain J Neurol 131:3092–3102

    Article  Google Scholar 

  • White CL, Pistell PJ, Purpera MN, Gupta S, Fernandez-Kim SO, Hise TL, Keller JN, Ingram DK, Morrison CD, Bruce-Keller AJ (2009) Effects of high fat diet on Morris maze performance, oxidative stress, and inflammation in rats: contributions of maternal diet. Neurobiol Dis 35:3–13

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Winer S, Paltser G, Chan Y, Tsui H, Engleman E, Winer D, Dosch HM (2009) Obesity predisposes to Th17 bias. Eur J Immunol 39:2629–2635

    Article  CAS  PubMed  Google Scholar 

  • Wright HP, Thompson RH, Zilkha KJ (1965) Platelet adhesiveness in multiple sclerosis. Lancet 2:1109–1110

    Article  CAS  PubMed  Google Scholar 

  • Wu A, Molteni R, Ying Z, Gomez-Pinilla F (2003) A saturated-fat diet aggravates the outcome of traumatic brain injury on hippocampal plasticity and cognitive function by reducing brain-derived neurotrophic factor. Neuroscience 119:365–375

    Article  CAS  PubMed  Google Scholar 

  • Yamakawa H, Jezova M, Ando H, Saavedra JM (2003) Normalization of endothelial and inducible nitric oxide synthase expression in brain microvessels of spontaneously hypertensive rats by angiotensin II AT1 receptor inhibition. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 23:371–380

    Article  CAS  Google Scholar 

  • Zhang SM, Willett WC, Hernan MA, Olek MJ, Ascherio A (2000) Dietary fat in relation to risk of multiple sclerosis among two large cohorts of women. Am J Epidemiol 152:1056–1064

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Dong F, Ren J, Driscoll MJ, Culver B (2005) High dietary fat induces NADPH oxidase-associated oxidative stress and inflammation in rat cerebral cortex. Exp Neurol 191:318–325

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank W. Leyssens, K. Wauterickx and A. Kerksiek for their technical assistance and animal handling. This work was supported by grants from the Agentschap voor Innovatie door Wetenschap en Technologie (IWT) and Fonds Wetenschappelijk Onderzoek (FWO).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerome J. A. Hendriks.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Timmermans, S., Bogie, J.F.J., Vanmierlo, T. et al. High Fat Diet Exacerbates Neuroinflammation in an Animal Model of Multiple Sclerosis by Activation of the Renin Angiotensin System. J Neuroimmune Pharmacol 9, 209–217 (2014). https://doi.org/10.1007/s11481-013-9502-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-013-9502-4

Keywords

Navigation